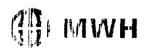
QUARTERLY MONITORING REPORT ACTIVE TREATMENT SYSTEMS SECOND QUARTER 2006

AMERICAN CHEMICAL SERVICE NPL SITE GRIFFITH, INDIANA

MWH File No. 2090601


Prepared For:

American Chemical Service NPL Site RD/RA Executive Committee Griffith, Indiana

Prepared By:

MWH Americas, Inc. 175 West Jackson Boulevard, Suite 1900 Chicago, Illinois 60604

September 2006

QUARTERLY MONITORING REPORT FOR ACTIVE TREATMENT SYSTEMS SECOND QUARTER 2006

AMERICAN CHEMICAL SERVICE NPL SITE GRIFFITH, INDIANA

Prepared For:

American Chemical Service NPL Site RD/RA Executive Committee Griffith, Indiana

Prepared by:

Novense 14, 2006

Conathan Pohl, P.E.

Project Engineer

Novense 14, 2006

Date

November 14 2016 6 Date

Approved by: Peter Vagt, Ph.D., PPG

Project Manager

TABLE OF CONTENTS

SEC	<u>PA</u>	<u> IGE</u>
AC	RONYMS AND ABBREVIATIONS	iv
1.0	INTRODUCTION	1
2.0	GWTP COMPLIANCE MONITORING	
	2.1 Introduction	3
	2.2 Effluent Sampling and Analyses	3
	2.3 Effluent Analytical Results	4
3.0	ISVE SYSTEM MONITORING	
	3.1 Thermal Oxidizer Off-Gas Sampling	5
	3.2 Sampling Results	
	3.3 ISVE System Monitoring	6
	3.4 Product Removal Activities	
4.0	GWTP PROCESS MODIFICATIONS AND REPAIRS	7
	4.1 GWTP Process Modifications	
	4.2 GWTP Repairs and Maintenance	
5 .0	ISVE PROCESS MODIFICATIONS AND REPAIRS	
	5.1 ISVE Process Modifications	8
	5.2 ISVE Repairs and Maintenance	
6.0	PGCS AND BWES GAUGING ACTIVITIES	
7.0	SYSTEM OPERATION	. 11
8.0	REFERENCES	. 12

TABLES

Table 2.1	Groundwater Treatment System Effluent Discharge Limits
Table 2.2	Summary of Effluent Analytical Results – Second Quarter 2006;
	Groundwater Treatment System
Table 3.1	Thermal Oxidizer 1 Results for Method TO-14 (VOCs) – April 2006
Table 3.2	Thermal Oxidizer 1 Results for Method TO-14 (VOCs) – May 2006
Table 3.3	Thermal Oxidizer 1 Results for Method TO-14 (VOCs) – June 2006
Table 3.4	Thermal Oxidizer 2 Results for Method TO-14 (VOCs) – April 2006
Table 3.5	Thermal Oxidizer 2 Results for Method TO-14 (VOCs) – May 2006
Table 3.6	Thermal Oxidizer 2 Results for Method TO-14 (VOCs) – June 2006
Table 3.7	SBPA and Off-site ISVE System Results for Method TO-14 (VOCs) – April 2006
Table 3.8	SBPA and Off-site ISVE System Results for Method TO-14 (VOCs) – May 2006
Table 3.9	SBPA and Off-site ISVE System Results for Method TO-14 (VOCs) – June 2006
Table 3.10	Thermal Oxidizer 1 Results for Method TO-13 (SVOCs) – April 2006
Table 3.11	Thermal Oxidizer 1 Results for Method TO-13 (SVOCs) – May 2006
Table 3.12	Thermal Oxidizer 1 Results for Method TO-13 (SVOCs) – June 2006
Table 3.13	Thermal Oxidizer 2 Results for Method TO-13 (SVOCs) - April 2006
Table 3.14	Thermal Oxidizer 2 Results for Method TO-13 (SVOCs) - May 2006
Table 3.15	Thermal Oxidizer 2 Results for Method TO-13 (SVOCs) – June 2006
Table 3.16	SBPA and Off-Site ISVE System Results for Method TO-13 (SVOCs) – April 2006
Table 3.17	SBPA and Off-Site ISVE System Results for Method TO-13 (SVOCs) – May 2006
Table 3.18	SBPA and Off-Site ISVE System Results for Method TO-13 (SVOCs) – June 2006
Table 3.19	Off-Site In-Situ Vapor Extraction (ISVE) System Well Monitoring Data – Second Quarter 2006
Table 3.20	Off-Site In-Situ Vapor Extraction (ISVE) System Header Monitoring Data – Second Quarter 2006
Table 3.21	SBPA In-Situ Vapor Extraction (ISVE) System Well Monitoring Data – Second Quarter 2006
Table 3.22	SBPA In-Situ Vapor Extraction (ISVE) System Header Monitoring Data – Second Quarter 2006
Table 3.23	Schedule of Product Removal Activities – Second Quarter 2006
Table 5.25	Water Table Elevations Across the Barrier Wall and Near the PGCS –
Table 0.1	Second Quarter 2006
Table 6.2	Water Levels Inside Barrier Wall – Second Quarter 2006
1.1010 0.2	mile Transaction mile Adams Kamara Tana

FIGURES

Figure 6.5 Water Level Trends Inside Barrier Wall (Off-Site Area)	er Level Trends Inside Barrier Wall (Still Bottoms Pond Area)	Figure 6.3 Figure 6.4
APPENDICES		Figure 6.5

Appendix A Effluent Analytical Data

- April 10, 2006 Compliance Sample Laboratory Results
- May 4, 2006 Compliance Sample Laboratory Results
- June 1, 2006 Compliance Sample Laboratory Results

Appendix B Thermal Oxidizer Off-Gas Analytical Data

- April 13, 2006 Off-Gas Sample Laboratory Results
- May 18, 2006 Off-Gas Sample Laboratory Results
- June 15, 2006 Off-Gas Sample Laboratory Results

ACRONYMS AND ABBREVIATIONS

AS Air Sparge **AMSL** Above Mean Sea Level Biological Oxygen Demand BOD Barrier Wall BWBarrier Wall Extraction System **BWES** cubic feet per minute cfm **Detection Limit** DL **Dual Phase Extraction** DPE **GA.C** Granular Activated Carbon Global Global Engineering Groundwater Treatment Plant **GWTP** Inches of mercury "Hg "H₂O Inches of water Indiana Department of Environmental Management **IDEM** Kapica Pazmey K-P lb/hr Pounds per hour Laboratory Data Consultants LDC Milligrams per kilogram mg/kg Milligrams per liter mg/L NC Not Calculated ND Not Detected NE No Effluent Limit Established NS Not Sampled OFCA Off-Site Containment Area **PCBs** Polychlorinated Biphenyls Parts per million ppm Perimeter Groundwater Containment System **PGCS** Performance Standard Verification Plan **PSVP Ouality Assurance Project Plan** OAPP Quality Assurance/Quality Control QA/QC SBPA Still Bottoms Pond Area Semi-Volatile Organic Compounds SVOC Aeration Equalization Tank (Tank – 102) T-102 Top of Casing TOC Top of Inner Casing TOIC **TOSG** Top of Staff Gauge TSS Total Suspended Solids Micrograms μg μg/L Micrograms per liter U.S. EPA United States Environmental Protection Agency

Volatile Organic Compounds

VOC

1.0 INTRODUCTION

MWH Americas, Inc. (MWH), on behalf of the American Chemical Service (ACS) Remedial Design/Remedial Action (RD/RA) Executive Committee, started up the on-site groundwater treatment system at the ACS National Priorities List (NPL) Site (ACS Site) in Griffith, Indiana on March 13, 1997. The groundwater treatment plant (GWTP) system was designed to treat groundwater from the Perimeter Groundwater Containment System (PGCS) and the Barrier Wall Extraction System (BWES). The original treatment consisted of a phase-separator for oil and free product removal, equalization tanks, an UV oxidation unit for destruction of organic constituents, and an air stripper to remove methylene chloride and other organics. The treatment also included a chemical precipitation and clarification unit to remove metals, a sand filter to remove suspended solids, and activated carbon vessels for final polishing of the treated groundwater before it was released to the west of the Site.

In 2001, an activated sludge treatment unit was added to the process to reduce the volatile and semivolatile organic compounds (VOCs and SVOCs) in the collected groundwater. The activated sludge treatment process also reduces the amount of activated carbon required to treat the water. An aerated equalization tank was also added to the GWTP in 2001 to remove VOCs from the collected groundwater, oxidize metals to increase metals removal efficiency in the chemical precipitation unit, and equalize groundwater flow through the GWTP. The activated sludge system and aeration tank have been fully integrated into the process along with the other upgrade components. Startup and optimization of the catalytic oxidizer/scrubber air treatment unit was also conducted during 2001.

The treated effluent from the treatment system is discharged to the nearby wetlands, west of the treatment system, in accordance with Agency approvals.

Operation of the In-situ Soil Vapor Extraction (ISVE) system for the Off-Site Containment Area (OFCA) and the Kapica-Pazmey (K-P) Area began on May 1, 2002. Operation of the ISVE system for the Still Bottoms Pond Area (SBPA) began in July 2003. The ISVE systems were designed to remove volatile and semi-volatile compounds from the subsurface media.

The Off-Site Area ISVE system consists of 42 ISVE wells, 3 air sparge wells, ISVE and air sparge blower systems, a thermal oxidizer/scrubber unit, and the associated mechanical and electrical components. Protocols and goals for the phased startup of the Off-Site System as defined in the Final Remedy (Montgomery Watson, 1999) were followed. In 2004, an additional blower unit was added to the Off-Site Area ISVE system to more effectively meet the design objectives of the system. The additional blower increased the capacity of the Off-Site ISVE system from 1000 to 2000 cubic feet per minute (cfm).

The SBPA ISVE system consists of 25 ISVE wells, 21 dual-phase extraction (DPE) wells, 6 air sparge wells, ISVE and air sparge blower systems, a thermal oxidizer/scrubber unit, and the associated mechanical and electrical components. During the first 12 months of system operation, the performance of the ISVE system was evaluated. Based on this evaluation, the

SBPA ISVE system was enhanced in accordance with a plan submitted to and approved by the EPA and IDEM. Under the approved plan, the system was enhanced by reconfiguring 18 of the ISVE wells to allow injection of air. Air for the injection wells is directed from blower ME-102/103 at the GWTP to the SBPA ISVE blower shed. The air injection system, which consists of three groups of five injection wells, began operation in December 2005. Three air injection wells are not in the regular monthly rotation because injection flow has not yet been established for these wells. MWH is currently working to establish flow at the remaining three locations. The air injection is scheduled to rotate between the three well groups on a monthly basis. Only one well group will operate at a time.

This report summarizes GWTP effluent analytical data and thermal oxidizer off-gas analytical data, ISVE process monitoring data, and water level gauging data collected from April 2006 through June 2006. The report also details modifications and upgrades that were made to the active treatment systems during the reporting period.

2.0 GWTP COMPLIANCE MONITORING

2.1 INTRODUCTION

Effluent samples are collected on a regular schedule from the ACS groundwater treatment system to demonstrate compliance with the discharge limits (Table 2.1) established by the Indiana Department of Environmental Management (IDEM) and the United States Environmental Protection Agency (U.S. EPA). The approved Performance Standard Verification Plan (PSVP) (Montgomery Watson, July 1997) requires quarterly effluent sampling for biochemical oxygen demand (BOD), total suspended solids (TSS), SVOCs, metals, and polychlorinated biphenyls (PCBs) in the system, and monthly effluent sampling for pH and VOCs, as tabulated below. In accordance with the PSVP, a full analysis effluent compliance sample was collected during April 2006 and analyzed for all of the analytes listed above. During May and June 2006, the monthly effluent compliance samples were analyzed for VOCs and pH only.

Sampling and analyses were performed in accordance with the approved Quality Assurance Project Plan (QAPP) (Montgomery Watson Harza, November 2001). Quality control measures were also instituted in accordance with the PSVP. The following table and paragraphs present details on sampling and analyses and also summarize the analytical data for the treatment system effluent.

Sampling Frequency Schedule - Groundwater Treatment System

Analytes	Cumulative Time From Startup*	Frequency
Flowrate	_	Continuous
BOD, TSS, SVOCs and Metals	181 days onward	Once per quarter
VOCs and pH	31 days onward	Once per month
PCBs	181 days onward	Once per quarter
PCBs in Sediment (one location)		Once per year

^{*}Note: System operation began on March 13, 1997

2.2 EFFLUENT SAMPLING AND ANALYSES

Effluent samples were collected each month during the second quarter of 2006. Samples were collected on the following dates and analyzed for the listed analytes for this reporting period:

April 10, 2006	Full analysis (pentachlorophenol,	 BOD,	Metals,	VOCs,	SVOCs,
May 4, 2006	pH and VOCs				
June 1, 2006	pH and VOCs				

The above samples were collected directly from a sampling port on the effluent line of the treatment system. The samples were placed in contaminant-free containers, in accordance with the U.S. EPA Specifications and Guidance for Obtaining Contaminant-Free Sample Containers (U.S. EPA, 1992). Appropriate sample containers and preservatives, as specified in the QAPP, were used to collect and preserve the samples. Following sample collection, the temperature of the sample containers was maintained at or below 4° C in coolers. Chain-of-Custody forms were prepared to track the transfer of samples from the treatment system to the laboratories. In accordance with the approved QAPP, the effluent water samples were analyzed for the following parameters by the following analytical methods:

<u>Parameter</u>	Analytical Method
VOCs	SW-846 8260B
SVOCs	SW-846 8270C
Pentachlorophenol	SW-846 8270C and SIM
Pesticides/PCBs	EPA 608/SW-846 8081/8082
Metals (Excluding Mercury)	
General Water Quality	SW-846 6010
Parameters (TSS and BOD-5)	EPA 160.2 and 405.1
Mercury	SW-846 7470
pH	EPA 150.1

2.3 EFFLUENT ANALYTICAL RESULTS

2.3.1 GWTP Effluent Samples

The GWTP effluent monitoring data, summarized in Table 2.2, verify that the system effluent was compliant with the discharge limits summarized in Table 2.1. No effluent exceedences were reported in the April, May, or June samples.

Compuchem Laboratory of Cary, North Carolina performed the analysis of the samples. Laboratory Data Consultants (LDC) of Carlsbad, California performed third party data validation in accordance with the U.S. EPA National Functional Guidelines for Organic/Inorganic Data Review (U.S. EPA, February 1994 and October 1999). Validation qualifiers are listed in Table 2.2 and are written in the margin of the analytical data sheets provided in Appendix A.

3.0 ISVE SYSTEM MONITORING

3.1 THERMAL OXIDIZER OFF-GAS SAMPLING

During the second quarter of 2006, Thermal Oxidizer/Scrubber Unit 1 (Therm Ox 1) was used to treat vapors from the SBPA ISVE system and Thermal Oxidizer/Scrubber Unit 2 (Therm Ox 2) was used to treat vapors from the Off-Site ISVE system and T-102. Compliance samples were collected from both thermal oxidizer/scrubber units on April 13th, May 18th, and June 15th.

Influent and effluent off-gas samples were collected directly from sampling ports on the influent pipe to the thermal oxidizer and the discharge stack of the scrubber. One influent sample and one effluent sample were collected. A duplicate influent sample was also collected. The samples were collected to comply with the PSVP and QAPP and in accordance with laboratory guidelines. The VOC samples were collected using a Summa canister and the SVOC samples were collected in sorbent tubes.

Sampling Frequency Schedule – ISVE System

Startup	Weekly for a four week period							
Post-Startup	Monthly in accordance with the							
	IDEM Air Permit Equivalency							

Following sample collection, the sorbent tubes were maintained at or below 4°C in coolers. Chain-of-Custody forms were prepared to track the transfer of samples from the treatment system to the laboratories for extraction and analysis. In accordance with the approved QAPP, the off-gas samples were analyzed by the following analytical methods:

Parameter	Analytical Method
VOCs	TO-14
SVOCs	TO-13

3.2 SAMPLING RESULTS

The influent and effluent off-gas data are collected to verify that the off-gas from both of the thermal oxidizers were less than the IDEM discharge limit of three pounds of VOCs per hour for April, May, and June. For example, the VOC discharge reported from the April 13, 2006 Therm Ox 1 sample was 0.015 pounds per hour, approximately one percent of the discharge limit. The VOC discharge from the April 13, 2006 Therm Ox 2 sample was 0.1577 pounds per hour, approximately five percent of the discharge limit. The results for May and June were within the same order of magnitude. Therefore, it can be concluded that the ISVE systems are performing well within discharge limits for air emissions. VOC discharge values for Therm Ox 1, Therm Ox 2, and the SBPA and Off-Site ISVE system are presented in Tables 3.1 through 3.9. The analytical data sheets for the compliance samples are provided in Appendix B.

In addition to the off-gas data collected during the second quarter, MWH collected off-gas samples from the Off-Site ISVE system and the SBPA ISVE system influent lines. These samples were collected in order to comply with the PSVP.

Air Toxics Laboratories of Folsom, California analyzed the samples. The analytical results are summarized in Tables 3.1 through 3.18. MWH performed data validation in accordance with the QAPP and the National Functional Guidelines for Organic/Inorganic Data Review. Validation qualifiers are listed in the tables and are written in the margin of the analytical data sheets provided in Appendix B.

3.3 ISVE SYSTEM MONITORING

Performance monitoring of the ISVE system was conducted in accordance with the PSVP (Montgomery Watson, June 1999). Extracted vapor flow rates and vacuums at individual ISVE wells and headers were measured and recorded on a routine basis. Additionally, VOC concentrations were measured at individual wells and headers using a photoionization detector (PID).

The information collected during performance monitoring is used to evaluate and optimize the ISVE system. Data collected from the Off-Site ISVE system during the second quarter of 2006 is presented in Tables 3.19 and 3.20. Data that was collected from the SBPA ISVE system during the second quarter of 2006 is presented in Tables 3.21 and 3.22.

3.4 PRODUCT REMOVAL ACTIVITIES

Product removal activities were performed at two ISVE well locations in the SBPA throughout the second quarter 2006 (SVE-53 and SVE-72). A total of 163 gallons were removed from these wells. The product removal schedule for the second quarter is summarized in Table 3.23.

4.0 GWTP PROCESS MODIFICATIONS AND REPAIRS

4.1 GWTP PROCESS MODIFICATIONS

The following modifications were made to the GWTP during the second quarter of 2006:

- In November 2005, blower ME-102, associated with the Activated Sludge Plant, malfunctioned. Blower ME-103 was utilized throughout the entire first quarter of 2006 to supply compressed air to various GWTP components and the SBPA ISVE system. The new blower was installed on April 5, 2006 and is now operational inside the noise abatement housing.
- On April 12, 2006, two new granular activated carbon (GAC) vessels were installed. The two existing vessels and GAC contained in them were removed from the GWTP on April 11, 2006. During the change-out process, water was re-circulated throughout the plant until the pH of the new carbon was lowered to an appropriate level to treat the water. On April 15, 2006, the GWTP resumed regular operations.
- The main air compressor at the GWTP was replaced on June 19 and 20, 2006. The compressor is a 40 horsepower (hp) rotary screw compressor. In order to install the compressor, the GAC vessels were temporarily moved. The GWTP was shut down throughout the installation.

4.2 GWTP REPAIRS AND MAINTENANCE

The following repairs were made to the GWTP during the second quarter of 2006:

- On April 16, 2006, the pump associated with the sand filter malfunctioned causing the filter to plug. As a result, water backed up into the biotank, triggering an alarm and causing the plant to shut down. The problem was remedied and the GWTP resumed normal operation on April 18, 2006.
- The power transformer (owned by Northern Indiana Public Service Company [NIPSCO]) at the GWTP was repaired on June 20, 2006.
- A portion of the floor of the GWTP was recoated on June 27th and 28th. The recoating occurred in the area near the GAC units.

5.0 ISVE PROCESS MODIFICATIONS AND REPAIRS

5.1 ISVE PROCESS MODIFICATIONS

Three sets of five air injection wells ran at the ACS site throughout the second quarter 2006:

- On April 21, 2006, MWH switched the air injection wells from Group 2 (SVE-49, SVE-51, SVE-65, SVE-71, and SVE-82) to Group 3 (SVE-44, SVE-59, SVE-77, SVE-80, and SVE-84).
- On May 24, 2006 MWH switched from Group 3 to Group 1 (SVE-50, SVE-54, SVE-73, SVE-79, and SVE-81).
- On June 22, 2006, MWH was at the Site to switch the air injection wells from Group 1 to Group 2. MWH will continue to rotate between the three groups of air injection wells on a monthly basis.

No modifications were made to the Off-Site ISVE system during the second quarter of 2006.

5.2 ISVE REPAIRS AND MAINTENANCE

The following repairs were made to the ISVE system during the second quarter of 2006:

- Heavy thunderstorms and the subsequent power outage on April 2, 2006 caused certain components on ThermOx 1 to malfunction. The appropriate repairs were made and the system was returned to service on April 3, 2006.
- During April, ThermOx 1 experienced difficulty maintaining the target chamber temperature. MWH traced the problem to the main burner valve. This valve was replaced in May with one that had a bigger orifice.
- A hole on the scrubber ductwork of ThermOx 1 was repaired in May.
- The main gas regulator of ThermOx 1 was replaced on May 31, 2006 after the unit shut down on May 29th. The unit was restarted on June 2nd.
- In June, a malfunctioning valve and thermocouple were repaired on ThermOx 1.
- ThermOx 2 was serviced on Monday, April 3, 2006. While it was being serviced, approximately 20 holes were observed on the combustion chamber shell. All the holes were patched and the unit resumed operation.

6.0 PGCS AND BWES GAUGING ACTIVITIES

When the GWTP was operational, the PGCS groundwater extraction trenches were operated in "auto" mode during the second quarter of 2006. In "auto" mode, the PGCS extraction wells pump continuously unless there is a low water level in individual extraction wells or a high water level in Aeration Equalization Tank (T-102). This mode is used to control the flowrate through the treatment system while at the same time creating an inward gradient along the PGCS trench. The GWTP also received influent from the On-Site and Off-Site components of the BWES, the SBPA DPE wells, MW-56 during the second quarter of 2006. The pump in MW-10C malfunctioned. Therefore, pumping did not occur at this location during the second quarter 2006. MWH will install a new pump in this well during the construction of the Lower Aquifer pumping system. This system is anticipated to be completed in the fall of 2006.

In accordance with the PSVP, a discussion on the effect of the PGCS and BWES on the water table near the Site is presented in each quarterly monitoring report. This section summarizes the groundwater elevations at the Site during April, May, and June 2006. Groundwater elevation measurements were collected throughout the Site on June 9, 2006 as part of the groundwater monitoring program. The groundwater elevations are listed in Table 6.1 and the resulting contours outside the barrier wall are shown on Figure 6.1.

The barrier wall was constructed to contain the contaminated zone under the Site and the BWES was installed to extract groundwater from within the barrier wall and dewater the Site for the ISVE system. Eight pairs of piezometers were installed, with one piezometer of each pair on either side of the barrier wall, spaced along the barrier wall alignment. This allows measurement and tracking of water levels in order to document that the barrier wall is serving its designed function.

Table 6.1, BWES Water Level and Piezometer Pairs, presents the groundwater elevations inside and outside the barrier wall from groundwater elevations measured on June 9, 2006. The groundwater elevations are illustrated on Figure 6.2. The groundwater elevation measurements outside the barrier wall range from 2.29 to 8.36 feet higher than levels inside the barrier wall. In general, the data demonstrates that the barrier wall is successfully performing the intended function of isolating and protecting the groundwater outside the barrier wall from the source areas of the Site inside the barrier wall. MWH will continue to collect water level measurements across the Site as required in the PSVP.

As part of the optimization of the GWTP and BWES upgrades, MWH began active dewatering of the Off-Site Area through increased groundwater pumping rates on September 25, 2001. Active dewatering of the SBPA began on February 11, 2003 with the addition of the DPE wells. Water levels were measured throughout the quarter at piezometer locations (P29, P31, P32, P36, and P49) in the On-Site Area and at piezometers (P96, P110, P112, P113, P114, P116, P118) and three air sparge (AS) wells (AS-7, AS-8, and AS-9) in the Off-Site Area. These locations are shown on Figure 6.3. The water level trend data from these piezometers and AS wells for the second quarter 2006 are depicted graphically on

Figures 6.4 and 6.5, which also reference the target water elevations for each area. In the SBPA, the target water level is 629 feet amsl. Similar to the first quarter 2006, the water levels in all five piezometer locations have been drawn down to below the bottom of the screens in these wells throughout the second quarter 2006. Therefore, our depth to water measurements show straight-line measurements of the bottom of the wells.

In the Off-Site ISVE area, the target water level is 626 feet amsl. Actual water levels varied from approximately 620.5 feet amsl to 628.5 feet amsl. This represents a slight increase in the average water levels from the first quarter 2006. MWH will continue to monitor the water levels in both the SBPA and Off-Site Area to ensure vapor extraction at the ISVE wells is not inhibited.

7.0 SYSTEM OPERATION

The GWTP operated as designed for 89 percent of the second quarter of 2006 (based on 1,949 hours of operation out of a total of 2,184 hours). The system drew influent from the On-Site Area BWES, the Off-Site Area BWES, the PGCS, and MW-56.

The Off-Site Area ISVE system continued to operate as designed for 86 percent of the second quarter of 2006 (based on 1,877 hours of operation out of a total of 2,184 hours). The SBPA ISVE system continued to operate as designed for approximately 64 percent of the second quarter of 2006 (based on 1,402 hours of operation out of a total of 2,184 hours).

11.11

8.0 REFERENCES

- 1. Final Remedial Design Report: Final Remedy, ACS NPL Site, Montgomery Watson, August 1999.
- 2. Performance Standard Verification Plan, ACS NPL Site, Montgomery Watson, July 1997.
- 3 Performance Standard Verification Plan, ACS NPL Site, Montgomery Watson, June 1999.
- 4 Phase I Technical Memorandum Wetland Investigation, ACS NPL Site, Montgomery Watson, July 1996.
- 5 Phase II Technical Memorandum Wetland Investigation, ACS NPL Site, Montgomery Watson, February 1997.
- 6 Quality Assurance Project Plan, ACS NPL Site, Montgomery Watson Harza, March 2001.
- 7 U.S. EPA Specifications and Guidance for Obtaining Contaminant-Free Sample Containers, United States Environmental Protection Agency, 1992.
- 8. Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, U.S. EPA, February 1994.
- 9. Contract Laboratory Program National Functional Guidelines for Organic Data Review, U.S. EPA, October 1999.

JFF/CAD/jmf/PJV J: 209\0603 ACS\0301 GWTP\6030301a192b.doc 2090602.020213 **TABLES**

Table 2.1
Groundwater Treatment System Effluent Discharge Limits
American Chemical Service NPL Site
Griffith, Indiana

Groundwater Quality Parameter	Effluent Standard (Limit)
General Water Quality Parameters	
pН	6 - 9 S.U.
BOD-5	30 mg/L
TSS	30 mg/L
Inorganics	
Arsenic	50 μg/L
Beryllium	NE
Cadmium	4.1 μg/L
Manganese	NE
Mercury	$0.02 \mu g/L (w/DL = 0.64)$
Selenium	8.2 μg/L
Thallium	NE
Zinc	411 μg/L
Volatile Organics	
Acetone	6,800 μg/L
Benzene	5 μg/L
2-Butanone	210 μg/L
Chloromethane	NE
1,4 – Dichlorobenzene	NE
1,1 - Dichloroethane	NE
1,2 - Dichloroethene - cis	70 μg/L
Ethylbenzene	34 μg/L
Methylene chloride	5 μg/L
Tetrachloroethene	5 μg/L
Trichloroethene	5 μg/L
Vinyl chloride	2 μg/L
4 – Methyl - 2 – pentanone	15 μg/L
emi-Volatile Organics	
bis(2 - Chloroethyl) ether	9.6 μg/L
bis(2 - Ethylhexyl) phthalate	6 μg/L
Isophorone	50 μg/L
4 - Methylphenol	34 μg/L
Pentachlorophenol	1 μg/L
CBs	
PCBs	$0.00056 \mu g/L (w/DL = 0.1 to 0.9)$

Notes:

NE = No effluent limit established.

DL = Detection limit

S.U. = Standard pH units

µg/L - micrograms per Liter

Table 2.2

Summary of Effluent Analytical Results - Second Quarter 2006

Groundwater Treatment System American Chemical Service NPL Site Griffith, Indiana

Event Date	Month 107 4/10/2006	Month 108 5/4/2006	Month 109 6/1/2006	Effluent Limits	Lab Reporting
ŗН	7 87	7.53 /J	7 47 /J	6-9	none
TSS	0 9 B	NS	NS	30	10
вор	2.0 U/	NS	NS	30	2
Arsenic	20.6	NS	NS	50	3.4
Beryllium	0.66 B/UB	NS	NS	NE	0.2
Cadmium	ND	NS	NS	41	0.3
Manganese	2 6 B/B	NS	NS	NE	10
Mercury	ND	NS	NS	0.02 (w/DL = 0.64)	0.64
Selenium	ND	NS	NS	8 2	4.3
Thallium	ND	NS	NS	NE	5.7
Zinc	ND	NS	NS	411	1 2
Ben.zene	0 50 U/	0.50 U/	0.50 U/	5	0.5
Aceione	2.5 U/UJ	2.5 U/UJ	2.5 U/UJ	6,800	3
2-Butanone	2.5 U/UJ	2.5 U/UJ	2.5 U/	210	3
Chloromethane	0.50 U/	0.50 U/UJ	0.50 U/UJ	NE	0.5
1.4-Dichlorobenzene	0.50 U/	0 50 U/	0.50 U/	NE	0.5
1.1-Dichloroethane	0.50 U/	0.50 U/	0 50 U/	NE	0.5
cis-1.2-Dichloroethene	0.50 U/	0 50 U/	0.50 U/	70	0.5
Ethylbenzene	0.50 U/	0.50 U/	0.50 U/	34	0.5
Methylene chloride	1.7	0 50 U/	0.45 J/	5	0.6
Tetrachloroethene	0.50 U/	0.50 U/UJ	0.50 U/UJ	5	0.5
Tricaloroethene	0.50 U/	0 50 U/	0.50 U/	5	0.5
Vinyl chloride	0.50 U/	0.50 U/	0.50 U/	2	0.5
4-Methyl-2-pentanone	2 5 U/UJ	2.5 U/UJ	2.5 U/	15	3
his (2-Chloroethyl) ether	ND	NS	NS	96	9.6
bis(2-Ethylhexyl) - phthalate	ND	NS	NS	6	6
4 - Methylphenol	ND	NS	NS	34	10
Isophorone	ND	NS	NS	50	10
Pentachlorophenol	ND	NS	NS	1	11
PCB/Aroclor-1016	ND	NS	NS	0.00056 (w/DL = 0.1 to 0.9)	0.5
PCB/Arcelor-1221	ND	NS	NS	0.00056 (w/DL = 0.1 to 0.9)	0.92*
I'CE/Aroclor-1232	ND	NS	NS_	0.00056 (w/DL = 0.1 to 0.9)	0.5
PCE/Aroclor-1242	ND	NS	NS	0.00056 (w/DL = 0.1 to 0.9)	0.5
PCE/Aroclor-1248	ND	NS	NS	0 00056 (w/DL = 0.1 to 0.9)	0.5
I'CE/Aroclor-1254	ND	NS	NS	0.00056 (w/DL = 0.1 to 0.9)	0.5
PCE/Aroctor-1260	ND_	NS	NS	0.00056 (w/DL = 0.1 to 0.9)	0.5

Notes

Holded result indicates a exceedence of the discharge limit p.H. data is expressed in S.U.

Metals, VOC, SVOC and PCB data is expressed in ug/L

- ND = Not detected
- S = This analyte was not sampled or analyzed for
- NE = No effluent limit established.
- DL = Detection limit
- S(U) = Standard pH units
 - = Approved SW-846 method is incapable of achieving effluent limit.

Suff x Definitions:

- = Data qualifier added by laboratory
- = Data qualifier added by data validator
- = Result is detected below the reporting limit and is an estimated concentration
- U = Analyte is not detected at or above the indicated concentration
- B = Compound is also detected in the blank
- 1.1 = Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value
- † B = Compound or analyte is not detected at or above the indicated concentration due to blank contamination

Table 3.1 Thermal Oxidizer 1 Results for Method TO-14 (VOCs) - April 2006 American Chemical Service Griffith, Indiana

		Sampled 4/13/06								
	- [:			Dest	Destruction Efficiency					
Compounds		Influent		Influent Dup		Effluent		Low	High	Average
11-Trichloroethane	ppbv	26,000		28,000		36		99.86%	99 87%	99 87%
1.1.2 2-Tetrachloroethane	ppbv	ND	U	ND	U	ND	Ų	NC	NC	NC
1 + .2-Trichloroethane	ppbv	ND	U	ND	U	ND	U	NC	NC	NC
1.1-Dich oroethane	ppbv	3,100		3,500		4 8		99.85%	99.86%	99 85%
1 1-Dich oroethene	ppbv	140	J/J	130	J/J	1.4		NC	NC	٧C
1.2-Dich oroethane	ppbv	340		340		ND	U	NC	NC	NC
1.2-Dich oropropane	ppbv	360		420		0.3	J/J	NC	NC	NC
2-Butanene (Methyl Ethyl Ketone)	ppbv	1,200		1,300		5.8		99.52%	99.55%	99.54%
2 Hexanone	ppbv	ND	U	ND	U	0.58	J/J	NC	NC	NC
4- Methyl-2-pentanone	ppbv	1,100		1,300		2.1	J/J	NC	NC	NC
Acetone	ppbv	740		720		24		96.67%	96.76%	96.71%
Benzene	ppbv	6,300		7,000		14		99.78%	99.80%	99 79%
Bromodichloromethane	ppbv	ND	U	ND	U	ND	U	NC	NC	NC
Bromoform	ppbv	ND_	U	ND	U	_ND	U	NC	NC	NC .
Bromomethane	ppbv	ND	U	ND_	U	ND	υ	NC	NC	NC
Carbon Disulfide	ppbv	ND	U	ND .	U_	0.22	J/J	NC	NC	NC
Carbon Tetrachloride	ppbv	ND	U	ND	U	ND	Ų	NC	NC	NC
Chlorobenzene	ppby	95	J/J	100	J/J	0.26]/J	NC	NC	NC
Chloroetnane	ppbv	220		230		44		98.00%	98.09%	98.04%
Chloroform	ppbv	6,400		6,600		1.8		99.97%	99.97%	99.97%
Chloromethane	ppbv	ND	<u>U</u>	ND	ับ	4.3		NC	NC	NC
cis-1.2-Dichloroethene	ppbv	15.000		16,000		55		99.63%	99.66%	99 64%
cis-1 3-Erichloropropene	ppbv	ND	U	ND	<u> </u>	ND	U	NC	NC	NC
D bromochloromethane	ppbv	ND	U	ND	U_	ND	U	NC	NC	NC
Ethyl Benzene	ppbv	9,600		11,000		17		99.82%	99 85%	99.83%
rn p-Xylene	ppbv	55,000		60,000		90		99.84%	99 85%	99.84%
Methylene Caloride	ppbv	6,400		6,800		4.1		99.94%	99.94%	99.94%
o-Xy ene	ppbv	27,000		29,000		30		99.89%	99 9(1%	99.89%
Styrene	ppbv	ND	U	ND	U	ND	U	NC	NC	NC
etrachloroethene	ppbv	40,000		43,000		130		99.68%	99.70%	99.69%
Toluene	ppbv	58,000		66,000		75		99.87%	99 89%	99.88%
trans-1.2-Dichloroethene	ppbv	150	J/J	100	J/J	1 5	J/J	NC	NC	NC
trans-1,3-Dichloropropene	ppbv	ND	U	ND	U	ND	U	NC	NC	٧C
Trichloroethene	ppbv	20.000		23,000		42	[99.79%	99.82%	99 80%
Viny Chlor de	ppbv	710		810		12		98.31%	98.52%	98.41%
Total	ppbv	277,855		305,35	0	556.50	6	99.80%	99.82%	99.81%
Total	lb/hr	7.196		7.892		0.015		99.79%	99.81%	99.80%

Notes:

`<\table = \text{\text{ot calculated}}

NO = Non-detect

poby = parts per billion volume

ll-hr = pounds per hour

Therm-Or, 1 VOC lb/hr based on 1680 scfm. 100 (influent) and 140 (effluent) degrees Fahrenheit (4/13/06)

Eastr action efficiencies were not calculated if either the influent or effluent samples were estimated.

Destruction efficiencies were also not calculated if the effluent result exceeded either influent result.

Total destruction efficiencies that include the estimated results of any individual compound will be considered an estimated value.

Qual fiers:

- = F.esul' is estimated
 - = Below reported quartitation limit
- = Laboratory data qualifier
 - = Data validation qualifier

Table 3.2 Thermal Oxidizer 1 Results for Method TO-14 (VOCs) - May 2006 American Chemical Service Griffith, Indiana

[Sampled 5/18/06									
		Therm-Ox 1					Destruction Efficiency				
Compounds	Units	Influent		Influent Dup		Effluent		Low	High	Average	
1 1.1-Trichloroethane	ppbv	17,000		17,000		11		99 94%	99 94%	99 94%	
1-1,2,2-Tetrachloroethane	ppbv	ND	Ü	ND	U	0.78		NC	NC	NC	
1-1,2-Trichloroethane	ppbv	ND	U	ND	Ū	ND	U	NC	NC	NC	
1-1-Dichloroethane	ppbv	2,100		2.200		2.4		99 89%	99 89%	99.89%	
1 1-Dichloroethene	ppbv	96]/J	100	J/J	64		NC	NC	NC	
1 2-Dichloroethane	ppbv	270		260		0.74		99 72%	99.73%	99.72%	
1 2-Dichloropropane	ppbv	230		290		ND	U	NC	NC	NC	
2-Butanone (Methyl Ethyl Ketone)	ppbv	510	J/J	670		63		NC	NC	NC	
2-Hexarone	ppbv	ND	U	ND	U	0 79]/J	NC	NC	NC	
4-Methyl-2-pentanone	ppbv	670		810		2.2	J/J	NC	NC	NC	
Acetone	ppbv	540		530	J/J	27		NC	NC	NC	
Benzens	ppbv	3,500		3,600		54	-	98.46%	98 50%	98 48%	
Bromodichloromethane	ppbv	ND	U	ND	U	ND	U	NC	NC	NC	
Bromoform	ppbv	ND	U	ND	U	0.23	J/J	NC	NC	NC	
Bromomethane	ppbv	ND	U	ND	U	0.36	J/J	NC	NC	NC	
Carbon Disulfide	ppbv	ND	U	ND	U	3.2		NC	NC	NC	
Carbon Fetrachloride	ppbv	ND	U	ND	U	ND	υ	NC	NC	NC	
Chlorobenzene	ppbv	ND	U	ND	U	2.2		NC	NC	NC	
Chloroethane	ppbv	180		180		4.7		97 39%	97.39%	97.39%	
Chleroform	ppbv	4,400		4,500		8.2		99.81%	99.82%	99.82%	
Chleromethane	ppbv	ND	U	ND	U	11]	NC	NC	NC	
c s-1.2-Dichloroethene	ppbv	12,000		12,000		45		99 63%	99 63%	99.63%	
c s-1,3-Dichtoropropene	ppbv	ND	U	ND	U	ND	U	NC	NC	NC	
Dibromoch'oromethane	ppbv	ND	U	ND	U	ND	U	NC	NC	NC	
Ethyl Benzene	ppbv	5,800		6,500		32		99 45%	99 51%	99 48%	
rup-Xylene	ppbv	31,000		35,000		210		99 32%	99.40%	99.36%	
Methylene Chloride	ppbv	3,600		3,800		14.0		99 61%	99.63%	99 62%	
o-Xylene	ppbv	16,000		18,000		120	, -	99.25%	99.33%	99.29%	
Styrene	ppbv	ND	U	ND	U	16		NC	NC	NC	
Tetrachloroethene	ppbv	27,000		29,000		190		99 30%	99 34%	99 32%	
Toluene	ppbv	40,000		43,000		160		99 60%	99.63%	99.61%	
trans-1.2-Dichloroethene	ppbv	110	J/J	130	J/J	12.0		NC	NC	NC	
trans-1.3-Dichloropropene	ppbv	ND	U	ND	U	0.4	_J/J	NC	NC	NC	
Trichloroethene	ppbv	15,000		15,000		74		99.51%	99.51%	99.51%	
Vinyl Caloride	ppbv	1,200		1,200		17		98.58%	98.58%	98.58%	
Total	ppbv	181,206	i	193,770	0	1,089.5	50	99,40%	99.44%	99.42%	
Total	lb/hr	4.387		4.682		0.026		99.41%	99.44%	99.43%	

Notes:

NC = Not calculated ND = Non-detect

poby = parts per billion volume

lothr = pounds per hour

Thenn-Cx 1 VOC lb/hr based on 1566 scfm, 90 (influent) and 138 (effluent) degrees Fahrenheit (5/18/06)

Destruction efficiencies were not calculated if either the influent or effluent samples were estimated.

Destruction efficiencies were also not calculated if the effluent result exceeded either influent result.

Total destruction efficiencies that include the estimated results of any individual compound will be considered an estimated value.

Qualifiers:

= Result is estimated

= Below reported quantitation limit

= Laboratory data qualifier

* Data validation qualifier

Table 3.3 Thermal Oxidizer 1 Results for Method TO-14 (VOCs) - June 2006 American Chemical Service Griffith, Indiana

<u> </u>						Sampled	6/15/0	6		
]				Therm-0	Ox 1			Destruction Efficiency		
Compounds	Units	Influe	nt	Influent	Dup	Efflue	ent	Low	High	Average
1-1,1-Trichloroethane	ppbv	32,000		32,000		73		99.77%	99.77%	99.77%
1-1,2,2-Tetrachloroethane	ppbv	ND	U	ND	U	ND	U	NC	NC	NC
1.1,2-Trichloroethane	ppbv	ND	U	ND	U	ND	U	NC	NC	NC
1 1-Dichloroethane	ppbv	3,400		3,500		8.8		99.74%	99.75%	99.74%
E1-Dichloroethene	ppbv	180	J/J	190	J/J	21		NC	NC	NC
1 2-Dichlorcethane	ppbv	540		520		2.4		99 54%	99 56%	99 55%
1 2-Dichlorepropane	ppbv	600		540		0.75		99 86%	99 88%	99.87%
2-Bi tanone (Methyl Ethyl Ketone)	ppbv	880	J/J	840	J/J	27		NC	NC	NC
2-Hexar one	ppbv	ND	U	ND	U	1.1	J/J	NC	NC	NC
4-Methyl-2-pentanone	ppbv	1,400	~	1,300		13		99 00%	99.07%	99.04%
Acetone	ppbv	2.500		2,100		66		96 86%	97.36%	97 11%
Benzene	ppbv	6,100		6,300		53		99.13%	99.16%	99.14%
Broinodich oromethane	ppbv	ND	U	ND	U	0.22	J/J	NC	NC	NC
Bromoform	ppbv	ND	u	ND	U	0.55	J/J	NC	NC	NC
Bromomethane	ppbv	ND	U	ND	U	0.21	J/J	NC	NC	NC
Carton Disulfide	ppbv	370	J/J	340	J/J	1.3	J/J	NC	NC	NC
Carbon Tetrachloride	ppbv	ND	U	ND	U	0.84		NC	NC	NC
Chlcrobenzene	ppbv	ND	IJ	ND	U	1.8		NC	NC	NC
Chlcroethane	ppbv	370		390		1.9		99.49%	99.51%	99.50%
Chleroform	ppbv	10,000		10,000		8		99.92%	99.92%	99.92%
Chloromethane	ppbv	ND	U	ND	U	4.6	[NC	NC	NC
cis-1.2-Dichtoroethene	ppbv	21,000		21,000		27		99.87%	99.87%	99.87%
cis-1.3-Dichloropropene	ppbv	ND	U	ND	U	ND	U	NC	NC	NC
Dibromochloromethane	ppbv	ND	U	ND	U_	0.28	J/J	NC	NC	NC
Ethyl Benzene	ppbv	12,000		12,000		44		99.63%	99.63%	99.63%
m.p-Xylene	ppbv	55,000		55,000		210		99 62%	99.62%	99.62%
Methylene Chloride	ppbv	8,000		8,100		59		99.26%	99.27%	99.27%
o-Xylene	ppbv	25,000		25,000		76		99 70%	99.70%	99.70%
Styrene	ppbv	ND	U	ND	U	ND	U	NC	NC	NC
Tetrach oroethene	ppbv	59,000		57.000		160		99 72%	99.73%	99.72%
Toluene	ppbv	67,000		65,000		260	']	99.60%	99.61%	99.61%
trans-1, 2-Dichloroethene	ppbv	160	J/J	160	J/J	3.7		NC	NC	NC
trans-1,3-Dichloropropene	ppbv	ND	U	ND	U	ND	U	NC	NC	NC
Trichloroethene	ppbv	32,000		31,000		80		99.74%	99.75%	99.75%
Vinyl Chloude	ppbv	1,400		1,400		5.6		99.60%	99.60%	99.60%
Total	ppbv	338,90)	333,68	0	1,211.0)5	99.64%	99.64%	99.64%
Total	lb/hr	8.428		8.288		0.028		99.66%	99.67%	99.66%

Notes:

'NC = Not calculated

ND = Non-detect

ppbv = parts per billion volume

35/hr = pounds per hour

Therm-Ox 1 VOC lb hr based on 1580 scfm, 114 (influent) and 146 (effluent) degrees Fahrenheit (6/15/06)

Destruction efficiencies were not calculated if either the influent or effluent samples were estimated.

destruction efficiencies were also not calculated if the effluent result exceeded either influent result.

Fotal destruction efficiencies that include the estimated results of any individual compound will be considered an estimated value.

Qualifiers:

I = Result is estimated

j = below reported quantitation limit

= _aboratory data qualifier

= Data validation qualifier

Table 3.4 Thermal Oxidizer 2 Results for Method TO-14 (VOCs) - April 2006 American Chemical Service Griffith, Indiana

	Sampled 4/13/06										
				Therm-0	Ox 2			Destruction Efficiency			
Compounds	Units	Influen	ıt	Influent	Dup_	Efflue	nt	Low	High	Average	
1.1.1-Trich oroethane	ppbv	15.000		14,000		500		96 43%	96.67%	96 55%	
1.1.2.2 Tetrachloroethane	ppbv	ND	U	ND	U	ND	υ	NC	NC	NC	
1.1 2-Trichloroethane	ppbv	ND	U	ND	U	ND	U	NC	NC	NC	
1.1-Dichloroethane	ppbv	2,200		2,100		71		96.62%	96 77%	96.70%	
1.1-Dichloroethene	ppbv	ND	U	ND	U	130		NC	NC	NC	
1.2-Dichloroethane	ppbv	480		490		18		96 25%	96.33%	96.29%	
1,2-Dichloropropane	ppbv	220	J/J	160	J/J	4 7	J/J	NC	NC	NC	
2-Butanone (Methyl Ethyl Ketone)	ppbv	5,100		4,600		140		96.96%	97.25%	97.11%	
2-Hexanone	ppbv	ND	U	ND	U	3.9	J/J	NC	NC	NC	
4-Methyl-2-pentanone	ppbv	2,800		2,900		49		98.25%	98.31%	98 23%	
Acetone	ppbv	5,600		5,400		350		93.52%	93.75%	93.63%	
Benzerie	ppbv	9,000		9,300		470		94.78%	94 95%	94.86%	
Bremodichloromethane	ppbv	ND	U	ND	U	ND	U	NC	NC	NC	
Brcinoform	ppbv	ND	U	ND	U	ND	Ū	NC	NC	NC	
Bremomethane	ppbv	ND	U	ND	U	ND	U [NC	NC	NC	
Carbor Disulfide	ppbv	ND	U	ND	U	13	J/J	NC	NC	NC	
Carbor, Tetrachloride	ppbv	ND	U	ND	U	2.9	J/J	NC	NC	NC	
Chlorobenzene	ppbv	86	J/J	72	J/J	5.4	J/J	NC	NC	NC	
Chloroethane	ppbv	520		390		14_		96.41%	97.31%	96.86%	
Chloroform	ppbv	1,200		1,100		43		96.09%	96.42%	96 25%	
Chloromethane	ppbv	ND	U	ND	U	9.8	J/J	NC NC	NC	NC	
cis-1,2-Dichloroethene	ppbv	5,800		4,800		220	[95.42%	96.21%	95.81%	
cis-1,3-Dichloropropene	ppbv	ND	U	ND	U	ND	U	NC	NC	NC	
Dibromochloromethane	ppbv	ND	U	_ND	U	ND .	υ	NC	NC	NC	
Ethyl Benzene	ppbv	7,600		7,700		160		97 89%	97.92%	97.91%	
m.p-Xylene	ppbv	35,000		36,000		640	_	98.17%	98 22%	98.20%	
Methy ene Chloride	ppbv	13,000		13,000		500		96.15%	96.15%	96 15%	
o-Xylene	ppbv	13,000		13,000		240		98.15%	98.15%	98.15%	
Styrene	ppbv	ND	U	ND	<u>U</u>	41		NC	NC	NC	
Tetrachloroethene	ppbv	16,000		15,000		640		95.73%	96.00%	95.87%	
Toluere	ppbv	54,000		54,000		1,400		97.41%	97 41%	97.41%	
trans-1.2-Dichloroethene	ppbv	200	_J/J	260	J/J	26		NC	NC	NC	
trans-1,3-Dichloropropene	ppbv	ND	U	ND	<u>U</u>	ND	U	NC	NC	NC	
Trichloroethene	ppbv	9.900		9,900		370		96.26%	96.26%	96.26%	
Vinyl Chloride	ppbv	790		410		51		87.56%	93 54%	90.55%	
Total	ppbv	197,496	5	194,582	2	6,112.	7	96.86%	96.90%	96.88%	
Total	lb/hr	5.127		5.040		0.1577		96.87%	96.92%	96.90%	

Notes:

NC = Net calculated

ND = Non-detect

pptv = parts per billion volume

lb/hr = pounds per hour

Therm-ON 2 VOC lb hr based on 1835 scfm. 72 (influent) and 150 (effluent) degrees Fahrenheit (4/13/06)

Destruction efficiencies were not calculated if either influent or effluent samples were estimated.

Destruction efficiencies were also not calculated if the effluent result exceeded either influent result.

Total destruction efficiencies that include the estimated results of any individual compound will be considered an estimated value.

Qualif ers:

J = Result is estimated

= Below reported quantitation limit

/ = Laboratory data qualifier

= Data validation qualifier

Table 3.5 Thermal Oxidizer 2 Results for Method TO-14 (VOCs) - May 2006 American Chemical Service Griffith, Indiana

						Sampled	5/18/0	6		·
				Therm-	Ox 2			Dest	ruction Effic	ciency
Compounds	Units	Influen	ıt	Influent	Dup	Efflue	nt	Low	High	Average
1-1.1-Trichloroethane	ppbv	13.000		18.000		670		94.85%	96.28%	95.56%
1.1.2.2-Tetrachloroethane	ppbv	ND	U	ND	U	ND	U	NC	NC	NC
1.1.2- Frichloroethane	ppbv	ND	U	ND	U	3.8	J/J	NC	NC	NC
1.1-Dichloroethane	ppbv	1,800		2,400		97		94.61%	95.96%	95.28%
1.1-Dichloroethene	ppbv	ND	Ų	200	J/J	150		NC	NC	NC
1.2-Dichloroethane	ppbv	420		580	_	24		94.29%	95.86%	95.07%
1.2-Dichloropropane	ppbv_	ND	U	ND	U	6.8		NC	NC	NC
2-Butanone (Methyl Ethyl Ketone)	ppby	5,400		6,300		260		95.19%	95.87%	95.53%
2-Hexanone	ppbv	ND	U		UJ	ND	U	NC	NC	NC
4-Methyl-2-pentanone	ppbv	2,600		2.600	J/J	61		NC	97.65%	97 65%
Acetone	ppbv	8,700		13,000		690		92.07%	94.69%	93.38%
Benzene	ppbv	7,200		11,000		620		91.39%	94.36%	92.88%
Bromodichloromethane	ppbv	ND_	U	ND	U	ND	U	NC	NC	NC
El-omofo:m	ppbv	ND	U	ND	U	ND_	U	NC	NC	NC
Bromomethane	ppbv	ND	U	ND	U	ND	_ U	NC	NC	NC
Cerbon Disulfide	ppbv	ND	U	ND	U	22		NC	NC	NC
Carbon Tetrachloride	ppbv	ND	U	ND	U_	ND	U	NC	NC	NC
Chlorobenzene	ppbv	ND	U	ND	U	ND	U	NC	NC	NC
Chloroethane	ppbv	170	.	ND_	U.	20		NC	88.24%	88.24%
Cilorofo m	ppbv	960		1,300		57		94.06%	95.62%	94.84%
Chloromethane	ppbv	ND	_U	ND	U_	20_	J/J	NC_	NC'	NC
cis-1.2-Dichloroethene	ppbv	3,700	·	4,500		260		92.97%	94.22%	93.60%
cis-1.3-Dichioropropene	ppbv	ND	U	ND	U/R	ND	_ U	NC	NC	NC
Dibromochloromethane	ppbv	ND	U	ND_	U	ND_	บู	NC	NC	NC
Ethyl Benzene	ppbv	5,600		9,700		210	<u></u>	96.25%	97.84%	97.04%
n.p-Xylene	ppbv	25,000		45,000	_ _	880		96 48%	98 04%	97 26%
Methyler e Chloride	ppbv	11,000		16,000	.	600		94.55%	96.25%	95.40%
c Xylene	ppbv	9,500		18,000		340		96 42%	98.11%	97.27%
Styrene	ppbv	ND	U	ND_	U	36		NC	NC	NC
Tetrachloroethene	ppbv	10,000		18,000		770		92 30%	95.72%	94.01%
T duene	ppbv	46,000		65,000		2,200		95 22%	96.62%	95.92%
trans-1,2-Dichloroethene	ppbv	ND	U	ND	_ <u>U</u>	26		NC	NC	NC
trans-1.3-Dichloropropene	ppbv	ND	_U_	ND	U	ND	U	NC	NC	NC
Trichlorcethene	ppbv	7,900		13,000		490	_]	93 80%	96.23%	95.01%
Vinyl Chloride	ppbv	250		290		34		86 40%	88.28%	87.34%
Total	ppbv	159,200)	244,87	0	8,547.0	6	94.63%	96.51%	95.57%
Total	lb/hr	3.981		6.208		0.2131		94.65%	96.57%	95.61%

Notes:

Not calculated

ND * Non-detect

ppbv ≈ parts per billion volume

lb/hr = pounds per hour

Therm-On 2 VCIC lb/hr based on 1812 scfm, 70 (influent) and 150 (effluent) degrees Fahrenheit (5/18/06)

Destruction efficiencies were not calculated if either influent or effluent samples were estimated.

Destruction efficiencies were also not calculated if the effluent result exceeded either influent result

Total destruction efficiencies that include the estimated results of any individual compound will be considered an estimated value.

Qualifiers:

- = Fesult is estimated
- = below reported quantitation limit
- R = Qual ty control indicates data is unusable
- = Labor ttory data qualifier
- = Liata validation qualifier

Table 3.6 Thermal Oxidizer 2 Results for Method TO-14 (VOCs) - June 2006 American Chemical Service Griffith, Indiana

						Sample	1 6/15/	/06	·	
	ľ			Therm-C	x 2			Dest	ruction Effic	iency
Compounds	Units	Influent	t	Influent I	Oup	Efflue	nt	Low	High	Ачегаде
1.1.1-Trichloroethane	ppbv	17,000		15.000		430		97.13%	97 47%	97.30%
1.1.2.2-Tetrachloroethane	ppbv	ND	U	ND	U	3 2	J/J	NC	NC	NC
1.1.2-Trichloroethane	ppbv	95	J/J	81	J/J	2.7]/J	NC	NC	NC
1.1-Dichloroethane	ppbv	2,600		2.400		73		96.96%	97.19%	97.08%
1.1-Dichloroethene	ppbv	740		590		130		77.97%	82 43%	80 20%
1.2-Dichloroethane	ppbv	400		380		- 11		97.11%	97.25%	97.18%
1,2-Dichloropropane	ppbv	160		160		4.9	J/J	NC	NC	NC
2-Butanone (Methyl Ethyl Ketone)	ppbv	4,400		4,100		91		97.78%	97.93%	97.36%
2-Hexanone	ppbv	ND	U	ND	U	ND	Ü	NC	NC	NC
4-Methyl-2-pentanone	ppbv	2,700		2,400		36		98.50%	98 67%	98.58%
Acetone	ppbv	5,900		5,300		260		95.09%	95.59%	95.34%
Benzene	ppbv	9,800		9,200	•	380	1	95.87%	96.12%	96.00%
Bromodich loromethane	ppbv	ND	U	ND	U	ND	υ	NC	NC	NC
Bromotorm	ppbv	ND	Ū	ND	U	ND	U	NC	NC	NC
Bromoinethane	ppbv	ND	U	ND	U	ND	U	NC	NC	NC
Carbon Disulfide	ppbv	ND	Ü	ND	U	6.7	J/J	NC	NC	NC
Carbon Tetrachloride	ppbv	ND	U	ND	U	ND	υ	NC	NC	NC
Chlorobenzene	ppbv	ND	U	ND	U	3.7	J/J	NC	NC	NC
Chloroethane	ppbv	1,100		940		27	[97 13%	97 55%	97 34%
Chloroform	ppbv	1,200		1.200		40		96 67%	96.67%	96 57%
Chloromethane	ppbv	ND	U	ND	U	12	J/J	NC	NC	NC
cis-1,2-Dichloroethene	ppbv	16,000		14.000		460		96.71%	97.13%	96.92%
cis-1,3-Dichloropropene	ppbv	ND	U	ND	U	ND	U	NC	NC	NC
Dibromochloromethane	ppbv	ND	U	ND	U	ND	U	NC	NC	NC
Ethyl Benzene	ppbv	8,300		7,400		200		97.30%	97.59%	97.14%
m.p-Xylene	ppbv	35,000		31,000		850		97.26%	97.57%	97.41%
Methylene Chloride	ppbv	11,000		14.000		320		97.09%	97.71%	97.40%
o-Xvlene	ppbv	14,000		13,000		420		96.77%	97 00%	96 88%
Styrene	ppbv	ND	U	ND	U	ND	U	NC	NC	NC
Tetrachloroethene	ppbv	30,000		23,000		1,000		95.65%	96.67%	96.16%
Toluene	ppbv	52,000		48,000		1,300		97.29%	97.50%	97.40%
rar s-1 2-Dichloroethene	ppbv	130	J/J	120	J/J	88		NC	NC	NC
trar s-1.3-Dichloropropene	ppbv	ND	U	ND	U	ND	U	NC	NC	NC
Trichlcroetnene	ppbv	14,000		13,000		480		96.31%	96.57%	96.44%
Vinyl Chloride	ppbv	1,700		1.400		91		93.50%	94.65%	94.07%
Total	ppbv	228,225		206,671		6,720.2	2	96,75%	97.06%	96.90%
Total	lb/hr	5.130		4.574		0,1513	,	96.69%	97.05%	96,87%

Notes:

NC = Not calculated

ND = Non-detect

opby = parts per billion volume

b/hr = pounds per hour

Therm-Dx 2 VOC lb/hr based on 1530 scfm. 82 (influent) and 150 (effluent) degrees Fahrenheit (6/15/06)

Destruction efficiencies were not calculated if either influent or effluent samples were estimated.

Destruction efficiencies were also not calculated if the effluent result exceeded either influent result.

For il destruction efficiencies that include the estimated results of any individual compound will be considered an estimated value.

Qualifiers:

J = Result is estimated

= Below reported quantitation limit

* Laboratory data qualifier

= Data validation qualifier

Table 3.7 SBPA and Off-Site ISVE System Results for Method TO-14 (VOCs) - April 2006 **American Chemical Service** Griffith, Indiana

[7	S	Sampled 4/13/2006						
Compounds	Units	SBPA IS	SVE	Off-Site ISVE					
1,1,1-Trichloroethane	ppbv	25,000		18,000					
1,1,2,2-Tetrachloroethane	ppbv	ND	U	ND	U				
1,1,2-Trichloroethane	ppbv	ND	U	ND	U				
1,1-Dichloroethane	ppbv	3,000		2,400					
1,1-Dichloroethene	ppbv	140	J/J	91	J/J				
1,2-Dichloroethane	ppbv	340		660					
1,2-Dichloropropane	ppbv	390		180	J/J				
2-Butanone (Methyl Ethyl Ketone)	ppbv	1,300		6,100					
2-Hexanone	ppbv	ND	U	ND	U				
4-Methyl-2-pentanone	ppbv	1,100		4,100					
Acetone	ppbv	840	J/J	8,300					
Benzene	ppbv	6,400		11,000					
Bromodichloromethane	ppbv	ND	U	ND	U				
Bromoform	ppbv	ND	U	ND	U				
Bromomethane	ppbv	ND	U	ND	U				
Carbon Disulfide	ppbv	ND	U	ND	U				
Carbon Tetrachloride	ppbv	ND	U	ND	U				
Chlorobenzene	ppbv	93	3/3	ND	U				
Chloroethane	ppbv	210	J/J	ND	U				
Chloroform	ppbv	5,900		1,500					
Chloromethane	ppbv	ND	U	ND	U				
cis-1,2-Dichloroethene	ppbv	14,000		1,800					
cis-1,3-Dichloropropene	ppbv	ND	U	ND_	U				
Dibromochloromethane	ppbv	ND	U	ND	U				
Ethyl Benzene	ppbv	9,100		11,000					
n,p-Xylene	ppbv	52,000		50,000					
Methylene Chloride	ppbv	6,200		18,000					
>-Xylene	ppbv	25,000		18,000					
Styrene	ppbv	ND	U	ND	U				
letrachloroethene	ppbv	39,000		19,000					
l'oluene	ppbv	59,000		72,000					
rans-1,2-Dichloroethene	ppbv	270	3/3	ND_	U_				
rans-1,3-Dichloropropene	ppbv	ND	U	ND	U				
Frichloroethene	ppbv	20,000]	12,000					
/inyl Chloride	ppbv	730		180	J/J				
[otal	ppbv	v 270,013 254,311							
Total .	lb/br	br 6.984 6.573							

Notes:
NC = Not calculated
ND = Non-detect

ppbv = parts per billion volume

lb/hr = pounds per hour

VOCs in lb/hr calculated based on Offsite: 1835 scfm, 66 degrees Fahrenheit (4/13/06)

On-site: 1680 scfm, 96 degrees Fahrenbeit (4/13/06)

Oualifiers:

= Result is estimated

= below reported quantitation limit U

= Laboratory data qualifier

= Data validation qualifier

Table 3.8 SBPA and Off-Site ISVE System Results for Method TO-14 (VOCs) - May 2006 American Chemical Service Griffith, Indiana

	Sampled 5/18/2006							
Compounds	Units	SBPA IS	VE	Off-Site I	SVE			
1,1,1-Trichloroethane	ppbv	17,000		24,000				
1,1,2,2-Tetrachloroethane	ppbv	ND	U	ND	U			
1,1,2-Trichloroethane	ppbv	ND	U	ND	U			
1, 1-Dichloroethane	ppbv	2,100		3,300				
1,1-Dichloroethene	ppbv	120	J/J	250	J/J			
1,2-Dichloroethane	ppbv	290		630				
1,2-Dichloropropane	ppbv	270		260	J/J			
2-Butanone (Methyl Ethyl Ketone)	ppbv	570		9,800				
2-Hexanone	ppbv	ND	U	ND	UJ			
4-Methyl-2-pentanone	ppbv	720		3,700	J/J			
Acetone	ppbv	420	J/J	19,000				
Benzene	ppbv	3,400		15,000				
Bromodichloromethane	ppbv	ND	U	ND	U			
Bromoform	ppbv	ND	U	ND	U			
Bromomethane	ppbv	ND	U	ND	U			
Carbon Disulfide	ppbv	ND	U	ND	U			
Carbon Tetrachloride	ppbv	ND	U	ND	U			
Chlorobenzene	ppbv	ND	U	ND	U			
Chloroethane	ppbv	210		ND	U			
Chloroform	ppbv	4,600		1,600				
Chloromethane	ppbv	ND	U	ND	U			
cis-1,2-Dichloroethene	ppbv	12,000		2,300				
cis-1,3-Dichloropropene	ppbv	ND	υ	ND	U/R			
Dibromochloromethane	ppbv	ND	U	ND	U			
Ethyl Benzene	ppbv	6,100		15,000				
m,p-Xylene	ppbv	33,000	\Box	68,000				
Methylene Chloride	ppbv	3,600		23,000				
>-Xylene	ppbv	17,000		28,000				
Styrene	ppbv	ND	U	ND	U			
Tetrachloroethene	ppbv	28,000		25,000				
l'oluene	ppbv	42,000		92,000				
rans-1,2-Dichloroethene	ppbv	ND	ND U		U			
rans-1,3-Dichloropropene	ppbv	ND U		ND	U			
Trichloroethene	ppbv	15,000		17,000				
vinyl Chloride	ppbv	1,300		230	J/J			
[otal	ppbv	187,700		348,070				
Total	lb/hr	hr 5.253 7.605						

Notes:

NC = Not calculated

ND = Non-detect

ppbv = parts per billion volume

lb/hr = pounds per hour

VOCs in lb/hr calculated based on Offsite: 1812 scfm, 68 degrees Fahrenheit (5/18/06)

On-site: 1566 scfm, 96 degrees Fahrenheit (5/18/06)

Qualifiers:

- J = Result is estimated
- L' = Below reported quantitation limit
- UJ = Analyte is not detected and the sample detection limit is an estimated quantity
- R = Quality control data indicates data is unusable
- = Laboratory data qualifier
- _ = Data validation qualifier

Table 3.9 SBPA and Off-Site ISVE System Results for Method TO-14 (VOCs) - June 2006 American Chemical Service Griffith, Indiana

	1	Sampled 6/15/2006							
Compounds	Units	SBPA IS	VE	Off-Site I	SVE				
1,1,1-Trichloroethane	ppbv	33,000		22,000					
1,1,2,2-Tetrachloroethane	ppbv	ND	U	ND	U				
1,1,2-Trichloroethane	ppbv	ND	U	140]/]				
1,1-Dichloroethane	ppbv	3,400		2,700					
1,1-Dichloroethene	ppbv	180	3/3	84	3/3				
1,2-Dichloroethane	ppbv	520		760					
1,2-Dichloropropane	ppbv	570		180					
2-Butanone (Methyl Ethyl Ketone)	ppbv	1,200		5,900					
2-Hexanone	ppbv	ND	U	ND	U				
4-Methyl-2-pentanone	ppbv	1,700		3,100					
Acetone	ppbv	3,600		9,700					
Benzene	ppbv	6,100		12,000					
Bromodichloromethane	ppbv	ND	U	ND	U				
Bromoform	ppbv	ND	U	ND	U				
Bromomethane	ppbv	ND	U	ND	U				
Carbon Disulfide	ppbv	360]/]	300	3/3				
Carbon Tetrachloride	ppbv	ND	U	ND	U				
Chlorobenzene	ppbv	ND	U	ND	U				
Chloroethane	ppbv	380		ND	U				
Chloroform	ppbv	10,000		1,800					
Chloromethane	ppbv	ND	U_	ND	U				
cis-1,2-Dichloroethene	ppbv	21,000		1,700					
cis-1,3-Dichloropropene	ppbv	ND	U	ND	U				
Dibromochloromethane	ppbv	ND	U	ND	U				
Ethyl Benzene	ppbv	11,000		7,900					
m,p-Xylene	ppbv	51,000		34,000					
Methylene Chloride	ppbv	8,300		19,000					
o-Xylene	ppbv	23,000		12,000					
Styrene	ppbv	ND	U	ND	U				
Tetrachloroethene	ppbv	56,000		18,000					
Toluene	ppbv	64,000		64,000					
trans-1,2-Dichloroethene	ppbv	150	J/J	ND	U				
trans-1,3-Dichloropropene	ppbv	ND	U_	ND	U				
Trichloroethene	ppbv	30,000		15,000					
Vinyl Chloride	ppbv	1,400		150	J/J				
Total	ppbv	by 326,860 230,414							
l'otal	lb/hr	8.106		4.984					

Notes:

NC = Not calculated

ND = Non-detect

ppbv = parts per billion volume

lb/hr = pounds per hour

VOCs in lb/br calculated based on: Offsite: 1530 scfm, 75 degrees Fahrenheit (6/15/06)
On-site: 1580 scfm, 110 degrees Fahrenheit.

Qualifiers:

J = Result is estimated

J = Below reported quantitation limit

/ = Laboratory data qualifier

_ = Data validation qualifier

Table 3.10 Thermal Oxidizer 1 Results for Method TO-13 (SVOCs) - April 2006 American Chemical Service Griffith, Indiana

					13/06	06				
1				Therm-					ruction Effic	
Compounds	Units	Influe		Influent		Efflue		Low	High	Average
1.2.4-Trichlorobenzene	μg	ND	U	0 51	J/J	ND	U	NC	NC	NC
1.2-Dichlerobenzene	μg	. 40		44		ND	U	100.00%	100.00%	100 00%
1.3-Dichlorobenzene	μg	3.5		3.8	-	ND	U	100.00%	100.00%	100.00%
1.4-Dichlerobenzene	μg	9.4		. 9.9		ND	U	100.00%	100 00%	100.00%
2.4.5-Tric algrophenol	μg	ND	U .	ND	_ U	ND	Ų	NC	NC	NC
2.4.6-Tric ilorophenol	μg	ND	U	ND	U	ND	U	NC	NC	NC
2.4 Dichlorophenol	μg	ND	U .	ND	Ü	ND	U	NC	NC	NC
2.4-Di nethylphenol	μg	ND	U	ND	. U	ND	U	NC	NC	NC
2.4-Dinitrophenol	μg	ND	U	ND	U	ND	U	NC	NC	NC_
2.4-Dmitrotoluene	μg	ND	<u>U</u>	ND	U	ND	U	NC	NC	NC
2.5-Dinitrotoluene	μg[ND	U	ND	U	ND.	U.	NC	NC	NC
2-Chloronaphthalene	μg	ND_	U	ND	U .	ND _	U.	NC	NC	NC
2-Chlorophenol	μg	ND	U	ND	U.	ND	Ų	NC	NC	NC_
2-Methylnaphthalene	μg	15		18		ND	U	100.00%	100.00%	100.00%
2-Methylphenol (o-Cresol)	μg	ND	υ	ND	U	ND	U	NC	NC	NC
2-Nitroaniline	μg	ND	U	ND	U	ND	U	NC	NC	NC
2-Nitropheno!	μg	ND	U	ND	U	ND	U	NC	NC	NC
3,3'-Dichlorobenzidine	μg	ND	U	ND	Ū	ND	U	NC	NC	NC
3-Nitroaniline	μg	ND	U	ND	U	ND	U	NC	NC	NC
4,5-Dinitro-2-methylphenol	μg	ND	U	ND	U	ND	U	NC	NC	NC
4-Bromophenyl-phenyl Ether	μg	ND	Ū	ND	U	ND	U	NC	NC	NC
4-Chloro-3-methylphenol	μg	ND	U	ND	U	ND	U	NC	NC	NC
4-Chloroaniline	μg	ND	U	ND	U	ND	U	NC	NC	NC
4-Chlorophenyl-phenyl Ether	μg	ND	<u>y</u>	ND	U	ND	U.	NC	NC	NC
4-Methylphenol/3-Methylphenol	μg	ND -	U	ND	U	ND	บี	NC	NC	NC NC
4-Nitroaniline		ND	<u>U</u>	ND	<u>V</u>	ND	U	NC NC	NC	NC
4-Nitrophenol	μg	ND ND	U	ND	U	ND	U	NC	NC	
Acenaphthene	μg			ND _	U	ND ND	<u>:</u>	NC	NC.	NC
Acenaphthylene	μg	ND ND	<u>บ</u>	ND.	U U	ND ND	. U.	NC NC	NC NC	NC NC
	μg	ND ND		ND ND	Ū	ND		NC NC		
Anthracene	<u>μ</u> g	ND	<u>U</u>		U	ND	U		NC NC	NC
Benzora)anthracene	<u>μ</u> g	ND.	U	NĎ	-		U	NC NC	NC NC	NC
Benzo(a)pyrene	μ <u>g</u>	ND.	Ų	. ND	U	ND_	. <u>U</u> .	NC	NC	NC
Benzo b)fluoranthene	μg	ND	U	ND	U	ND	_ U	NC.	NC	NC_
Benzo(g.h.i)perylene	μg	ND	Ü	ND	· <u>U</u>	_ ND	U	NC	NC	NC
Benzo k)fluoranthene	μg	ND_	, <u>U</u>	ND	<u>U</u>	ND	_ U	NC	NC	NC
bis(2-Chloroethoxy) Methane	μg	ND_	<u>i</u>	ND	_ <u>U</u>	<u>ND</u> _	<u>U</u>	NC	NC	NC
bis(2-Chloroethyl) Ether	μg	1.8		2.1		<u>ND</u>	U	_ 100.00% _	100.00%	100.00%
bisi 2-Ethylhexyl)phthalate	<u>μ</u> g	16	J/J	2.0	J/J	ND	ַ ט	NC	NC.	NC
Butylbenzylphthalate	μg	1.1	J/J	ND	. Ū	ND	ַ טַ	NC	NC	NC
Chrysene	μg	ND	U.	ND	U	ND	U	NÇ .	NC NC	NC
Dibenz(a, 1)anthracene	μg	ND	U .	ND	_U	ND	U	NC	NC NC	NC
Dibenzofuran	μg	ND	U	ND	U	ND	U	NC	NC	NC
Diethylphthalate	μg	ND	U	ND	U	ND	U	NC	NC	NC
Dunethylphthalate	μg	ND	U	ND	U	ND	U	NC	NC	NC
di-n-Buty phthalate	μg	ND	U .	ND	U	ND	ู บู	NC	NC	NC
Di-n-Octylphtnalate	μg	ND	U	ND	U	ND	_U	NC	NC	NC
Fluoranthene	μg	ND	U	ND	U	ND	U	NC	NC	NC
F uorene	μg	ND	U	ND	U	ND	U	NC	NC	NC
Hexachlorobenzene	μg	ND	U	ND	U	ND	U	NC	NC	NC
Hexachlorobutadiene	μg	5.6		60		ND	U	100.00%	100.00%	100 00%
He xachlorocyclopentadiene	μg	ND	U	ND	U	ND	U	NC	NC	NC
Hexachioroethane	μg	ND	Ŭ,	ND	U	ND	U	NC	NC _	NC
Ir deno(1,2,3-c.d)pyrene	μg	ND	U	ND	U	ND	ับ	NC	NC .	NC NC
Isophorone _	μg	3 7	۶.	4.3	¥	ND	- <u>u</u>	100 00%	100.00%	100 00%

Table 3.10 Thermal Oxidizer 1 Results for Method TO-13 (SVOCs) - April 2006 **American Chemical Service** Griffith, Indiana

<u> </u>		Sampled 4/13/06											
	1 1			Therm-(Ox 1			Destruction Efficiency					
Compounds Naphthalene	Units	Influent		Influent Dup		Efflue	Effluent		High	Average			
	μg	20		23		ND	U	100.00%	100 00%	100.00%			
Nitrobenzene	μg	ND	U	ND	U	ND	U	NC	NC	NC			
N-Mitroso-di-n-propylamine	μg	ND	U	ND	U.	ND	U	NC	NC	NC			
N-Nitrosodiphenylamine	μg	ND	U	ND	U	ND	U	NC	NC	NC			
Pentachlorophenol	μg	ND	Ü	ND	Ų	ND	Ų,	NC	NC	NC			
Phenanthrene	μg	ND	U	ND	U	ND	U	NC	NC	NC			
Phenol	μg	ND	U	ND	U	ND	U	NC	NC	NC			
Pyrene	μg	ND	U	ND	U	ND	U	NC	NC NC	NC			
Total	μg	101.7	0	0.00		0.00		0.00%	100.00%	50.00%			

Notes:

µg = Microgram

NC = Not calculated

ND = Non-detect

Destruction efficiencies were not calculated if either influent or effluent samples were estimated.

Destruction efficiencies were also not calculated if the effluent result exceeded either influent result.

Total destruction efficiencies that include the estimated results of any individual compound will be considered an estimated value

Qualifiers:

J = Result is estimated

U = below reported quantitation limit

= Laboratory data qualifier = Laboratory data qualifier

= Data validation qualifier

Table 3.11 Thermal Oxidizer 1 Results for Method TO-13 (SVOCs) - May 2006 American Chemical Service Griffith, Indiana

		Sampled 5/18/06										
	į			Therm-0				Destruction Efficiency				
Compounds	Units	Influe	nt	Influent	Dup	Efflu	ent	Low	High	Average		
1-2,4-Trichlorobenzene	μg	ND	U	ND	U	ND	U	NC	NC	NC		
1 2-Dichlorobenzene	μg	20		24	•	ND	U	100.00%	100 00%	100.00%		
1.3-Dichlorobenzene	μg	1.9		2.3		ND	U	100.00%	100 00%	100.00%		
L4-Dichlorobenzene	μg	4.7		5 5		ND	U	100.00%	100.00%	100.00%		
2 4.5-Trichlorophenol	μд	ND	U	ND	U	ND	U	l NC	NC	NC		
2 4.6-Trichlorophenol	μg	ND	U	ND	U	ND	υ	NC	NC	NC		
2.4-Dichlorophenol	μg	ND	Ú	ND	U	ND	U	NC	NC	NC		
2.4-Dime hylphenol	μg	ND	Ü	ND	U	ND	U	NC NC	NC	NC		
2 4-Dinitrophenol	_μg	ND	· U	ND	U	ND	U	NC	NC	NC		
2.4-Dinitrotoluene	μg	ND	U	ND	Ü	ND	U	NC	NC	NC		
2.n-Dinitrotoluene	μg	ND	U	ND	U	ND	U	NC	NC	NC		
2. Chloror ar hthalene	μg	ND	U	ND	U	ND	υ	NC	NC	NC		
2-Chlorophenol	μg	ND	U	ND	U	ND	U	NC	NC	NC		
2- Methylnaphthalene	μg	5	٠.	5.5		ND	U	100.00%	100.00%	100 00%		
2-Metnylphenol (o-Cresol)	μg	ND	U	ND	U	ND	U	NC	NC	NC		
2-Nitroaniline	μg	ND ND	U	ND	U	ND	U.	NC NC	NC	NC NC		
2-Nitrophenol	μg	ND	U -	ND	 U	ND	U	NC NC	NC	NC NC		
3 3'-Dichlorobenzidine	μg	ND	U	ND	U	ND	U	NC NC	NC	NC NC		
3-Nitroaniline	1 1	ND	Ū.	ND	U U	ND .	<u>.</u> U	NC NC	NC	NC		
4 6-Dantto-2-methylphenol	μg	ND	ับ	ND	υ	ND	บ	NC NC	NC	NC NC		
Fromophenyl-phenyl Ether	μg	ND	Ŭ_	ND ND	Ū	ND	U	NC NC	NC	NC		
4-Chloro-3-methylphenol	µg	ND	Ū-	ND	U	ND	U	NC NC	NC NC	NC		
4 Chlorosniline	μg	ND	U.U.	ND	บ	ND	- U	NC NC	NC NC	NC		
4-Chlorophenyl-phenyl Ether	HE HE	ND	บ	ND	U	ND	U		NC NC	NC NC		
	. μg	ND	 U	ND ND	U	ND		NC NC				
4 Methylphenol/3-Methylphenol 4 Nitroaniline	μg		<u>U</u>	ND	U	ND	. U	NC NC	NC	NC_		
	μg	ND					U	NC NC	NC NC	NC		
4 Nitrophenol	μg	ND	U _ ·	ND_	<u>.U</u> .	ND	. <u>U</u>	NC	NC NC	NC		
Acenaphthene	нg	ND	U	ND	U	ND	U	NC NC	NC NC	NC_		
Acenaphthylene	μ <u>g</u>	ND	U	ND	U	ND	<u>U</u>	NC NC	NC.	<u>NC</u>		
Anthracene	μg	ND	U	ND	<u></u> <u>U</u>	ND	U	NC	NC	NC		
Bcnzo(a)anthracene	πg	ND	U	ND_	<u>U</u>	ND	U	NC .	NC	NC		
Benzo(a)pyrene	_μg	ND	U	ND	<u>U</u>	ND	. U	NC	NC	NC		
Benze(b) luoranthene	µg	<u>ND</u>	. U	ND	U	ND	U	NC _	NC	NC_		
Benze(g.h,) perylene	μg	ND	Ū	ND_	U	ND	U	NC	NC	NC		
Benze(k) luoranthene	μg	ND	U	ND	î <u>n</u> - ´	ND	. U	NC	NC	, NC		
ois(2-Chloroethoxy) Methane	<u>μg</u>	ND	ัก	ND	<u> </u>	ND	U	NC	NC	NC		
ois(2-Chloroethyl) Ether	µg	N <u>Ď</u>	U	ND	<u>U</u>	. ND		йC	NC	NC		
os(2-Ethylhexyl)phthalate	μg		J/J	10		1.8	J/J	NC	NC	NC .		
Butylbenzylphthalate	<u>μ</u> g _	0 62	J/J	ND	_ <u>U</u>	ND	_ U	NC	NC	NC_		
Chrysene	µg	ND	. U .	ND	U	ND	Ü	NC _.	NC	NC.		
Orbenz(a h)anthracene	μg	ND	U	ND	U	_ ND _	U_	NC	NC.	NC		
Onbenzofuran	<u>μ</u> g	ND	<u>U</u>	ND	<u>n</u>	ND	U	NC	NC	NC		
Deethy lphthalate	μg	0 76	J/J	0.65	J/J	0.56	J/J	NC	NC	NC		
D methylphthalate	μд	ND	Ų	ND	U	ND	ប	NC	NC	NC		
di-n-Butylphthalate	μg	ND	U	ND	U	ND	บ	NC	NC	NC		
Di-n-Octylphthalate	μд	ND	U	ND	U	ND	υl	NC	NC	NC		
Fluoranthene	μg	ND	Ų	ND	U	ND	U	NC	NC	NC		
Fluorene	μg	ND	U	ND	U	ND	U	NC	NC	NC		
lexachlorobenzene	μg	ND	Ų	ND	Ū	ND	U	NC	NC	NC		
lexachlorobutadiene	μд	3.7		4		ND	U	100.00%	100.00%	100.00%		
lexachlorocyclopentadiene	μд	ND	U	ND	U	ND	U	NC	NC	NC		
lexachloroethane	μв	ND	Ü	ND	_ U	ND	U	NC	NC	NC		
odeno(1.2.3-c.d)pyrene	μg	ND	Ü	ND	U	ND	U	NC	NC	NC		
sophorone	μg	17	~	1.7	-··- - -	ND	υ	100.00%	100.00%	100.00%		

u f

n **4**

igt £

0.1

Table 3.11 Thermal Oxidizer 1 Results for Method TO-13 (SVOCs) - May 2006 American Chemical Service Griffith, Indiana

		Sampled 5/18/06											
}		<u>-</u>		Therm-(Ox 1			Destruction Efficiency					
Compounds	Units	Influent		Influent Dup		Effluent		Low	High	Average			
Naphthalene	μg	7.3		9.4		ND	υ	100.00%	100 00%	100 00%			
N trobenzene	μg	ND	U	ND	U	ND	U	NC	NC	NC			
N Nitraso di-n-propylamine	μg	ND	U	ND	U	ND	U	NC	NC	NC			
N-Nitrosodiphenylamine	μе	ND	U	ND	U	ND	U	NC	NC	NC			
Pentachlotophenol	μg	ND	U	ND	U	ND	U	NC	NC	NC			
Phenanthrene	μg	ND	Ū	ND	U _.	ND	U	NC	NC	NC			
Phenol	μе	ND	U	ND	U	ND	U	NC	NC	NC			
Pyrene	μg	ND	U	ND	U_	ND	U	NC	NC	NC			
Total	hā	46.68		63.05		2.36		94.94%	96.26%	95.60%			

Notes:

μιμ = Microgram

NC = Not calculated

ND = Non-detect

Destruction efficiencies were not calculated if either influent or effluent samples were estimated.

Destruction efficiencies were also not calculated if the effluent result exceeded either influent result.

Focal destruction efficiencies that include the estimated results of any individual compound will be considered an estimated value.

Qualifiers:

J = Result is estimated

U = Below reported quantitation limit

= Laboratory data qualifier

= Data validation qualifier

 $CR^* = E.F.'C/\nu D'jinf$

Table 3.12 Thermal Oxidizer 1 Results for Method TO-13 (SVOCs) - June 2006 American Chemical Service Griffith, Indiana

						Sampled 6	5/15/06	,		
				Therm-				T	truction Effic	
Compounds	Units	Influe	nt	Influent	Dup	Efflue		Low	High	Average
1.2.4- frichlorobenzene	μg	2.1	-	3.5		ND	U	100.00%	100.00%	100 00%
1.2-Dichlorobenzene	μg	74	-	_110		ND	U		100 00%	100.00%
1.3-Dichlorobenzene	μg	7.1		11		ND	U	100.00%	100.00%	100.00%
1.4-Dichlorobenzene	μg	18		27		ND	U	100.00%	100 00%	100.00%
2 4,5-Trichlorophenol	μg	ND	. U	ND	U	ND	U	NC	NC	NC
2.4.6- Frichlorophenol	μg	ND	Ū	<u>N</u> D	_ U	ND	U	NC	NC	NC
2.4-Dichlorophenol	μg	ND _	U	ND	U	ND	U	NC	NC .	NC
2 4-Dime hylphenol	μg	_ND	U	<u>ND</u>	U.	ND	U	NC	NC.	NC
2 4-Dinitrophenol	μg	ND	U	ND	U	<u>ND</u>	U	NC	NC	NC
2 4-Dinitrotoluene	μg	ND	Ü	ND	U	ND.	U	NC	NC	NC .
2 e-Dinittotoluene	μg	ND _	U .	ND	U .	ND	U	NC	NC	NC
2 Chioronaphthalene	μg	ND .	U	ND	U	NĎ	. U	NC	NC NC	NC
2 Chlorophenol	μg	ND	U	ND	U	ND	U	NC	NC	NC
2 Methylnaphthalene	μg	27		44		ND	U	100.00%	100.00%	100.00%
2 Methylphenol (o-Cresol)	μg	ND	_U	ND	U	ND	U	NC	NC	NC
2-Vitroaniline	μg	ND	_U	ND	U	ND.	U	NC .	NC	NC
2-Nitrophenol	<u>дв</u>	ND	<u>U</u>	ND	U.	ND	<u>. U</u>	NC	NC	NC .
3.3'-Dichlorobenzidine	μ <u>в</u>	ND	U	ND	U	ND	U .	NC	NC	NC
3-Nitroaniline	μg_	ND	<u> </u>	ND	U	ND	U	NC	NC	NC
4 %-Dinitro-2-methylphenol	μg	ND	<u>U</u>	ND	_ <u>U</u>	ND	U	NC .	NC.	NC
4-Bromophenyl-phenyl Ether	μg	ND	<u>U</u>	ND	<u>U</u>	ND .	_ U	ЙС	NC	NC
4-Chloro-3-methylphenol	μg	ND.	<u>U</u>	ND	<u>U</u>	ND	U	NC.	NC	NC .
4-Chloroaniline	μg	ND	_U	ND	<u>U</u>	ND	υ	NC	NC	NC
4-Chlorophenyl-phenyl Ether	με	ND	U	ND	U	ND	U	ŅÇ	NC	NC
4-Methylphenol/3-Methylphenol	μg	ND	U	ND	<u>U</u>	ND	U	NC	NC	NC
4-Nitroar iline	μg	ND	U	ND	U	ND	_ U.	NC	NC	NC .
4-Nitrophenol	μg	ND	<u>U</u>	ND	U	ND	U	NC	NC	NC
Acenaphthene	μg	ND	U	ND	_U	ND	U	NC	NC	NC
Acenaphthylene	μg	ND	U	ND	U	ND	U	NC	NC	NC
Anthracene	μg	ND	U	ND	U	ND	U	NC	NC	NC
Benzo(a)anthracene	μg	ND	U	ND	U	ND	U	NC	NC	NC
Benzo(a)pyrene	μg	ND	U	ND_	U	ND_	U	NC	NC	NC
Benzo(b)fluo-anthene	μg	ND	U	ND	<u>U</u> .	ND	U	NC	NC	NC
B; nzo(g.h.i)perylene	μg	ND	U	ND	U	ND	U	NC	NC	NC
Benzo(k)fluoranthene	μg	ND	U	ND	U	ND	U	NC	NC	NC
bis(2-Ch oroethoxy) Methane	μg	ND	U	ND	U	ND	υ	NC	NC	NC
bis(2-Ch oroethyl) Ether	μg_	11		18		ND	U	100.00%	100.00%	100.00%
bis(2 Ethylhexyl)phthalate	μg	16		6.6		8.2		NC	NC	NC
Butylbenzylphthalate	μg	ND	U	ND	U	ND	U	NC	NC	NC
Chrysene	μg	ND	U	ND	U	ND	U	NC	NC	NC
Dibenz(a,h)anthracene	μg	ND	U	ND	U	ND	Ü	NC	NC	NC
D-benzoturan	μg	ND	U	ND	U	ND	υ	NC	NC	NC
D ethylpathalate	μg	ND	U	ND	Ü	ND	ט ו	NC	NC	NC
Dimethylphthalate	μg	ND	U_	ND	Ų.	ND	U	NC	NC	NC
di-n-But, Iphthalate	μg	ND	U	ND	Ü	ND	U	NC	NC	NC
Di-n-Octylphthalate	μg	ND	U	ND	U	ND	U	NC	NC	NC
Fluorantiene	μg	ND	U	ND	Ū	ND	U	NC	NC	NC
Fluorene	με	ND	U	ND	Ų.	ND	U	NC	NC	NC NC
Hexachlorobenzene		ND	U	ND	_ U	ND	U	NC.	NC	NC
Lexachlorobutadiene	μg	15			. ~	ND	U	100.00%	100.00%	
- · · · · · · · · · · · · · · · · · · ·	μg			<u>26_</u>	11		- 1			100.00%
l exachlorocyclopentadiene	μg	ND	. U	ND	Ü -	ND_	U	NC	NC	NC NC
l-(exachloroethane	μg	ND _	<u>U</u>	ND	. U	ND	U	NC .	NC .	. NC
Indeno(1,2 3-c,d)pyrene	μg	ND.	, U ,	ND	Ų	ND	U	NC	NC .	NC
iophorene	μg	5		8.9		ND	U	100.00%	100 00%	100.00%

. :

41.0

Table 3.12 Thermal Oxidizer 1 Results for Method TO-13 (SVOCs) - June 2006 American Chemical Service Griffith, Indiana

Compounds Nophihalene		Sampled 6/15/06								
	Units μg	Therm-Ox 1						Destruction Efficiency		
		Influent		Influent Dup		Effluent		Low	High	Average
		35		58		ND	U	100 00%	100.00%	100.00%
Nitrobenzene	μg	ND	U	ND	U	ND	U	NC	NC	NC
N-Nitroso-di-n-propylamine	μе	ND	U	ND	U	ND	U	NC	NC	NC
N-Nitrosodiphenylamine	μg	ND	U	ND	Ü	ND	U	NC	NC	NC
Pentachlorophenol	μg	ND	U	ND	Ü	ND	U	NC	NC	NC
Phent nthrene	μд	ND	Ū	ND	Ü	ND	U	NC	NC	NC
Phenol	μg	ND	U	ND	U	ND	U	NC	NC	NC
Pyrene	μg	ND	U	ND	U	ND	U	NC	NC	NC
Total	μg	210.20		313.00		8.20		96.10%	97.38%	96.74%

Notes:

411

μg = Microgram

NC = Not calculated

ND = Nor-detect

Destruction efficiencies were not calculated if either influent or effluent samples were estimated.

Destruction efficiencies were also not calculated if the effluent result exceeded either influent result

Total destruction efficiencies that include the estimated results of any individual compound will be considered an estimated value

<u>Cualifiers:</u>

J = Result is estimated

L = Below reported quantitation limit

= Laboratory data qualifier

= Dat i validation qualifier

CR* JEF/CAD/jinf

911

Table 3.13 Thermal Oxidizer 2 Results for Method TO-13 (SVOCs) - April 2006 American Chemical Service Griffith, Indiana

	-		<u></u>			Sampled	1 4/13/00			
				Therm-					ruction Effic	
Compounds	Units	Influe		Influen		Efflu		Low	High	Average
1.2, 4-Trichlorobenzene	μg	ND	U	ND	U	ND	U	NC	NC	NC
1.2-Dichlorobenzene	μg	_10		12		0.67	J/J	NC ,	NC	NC
1.3-Dichlorobenzene	μg .	1.4		0.5	J/J	ND .	U	NC	NC	NC
1.4-Dichlorobenzene	μg	1.4		16		ND.	U	100.00%	100.00%	100 00%
2,4,5-Tachlorophenol	μg	ND	Ų	ND	U,	ND	U	NC .	NC	NC
3.4.5-T ichlorophenol	μg	ND .	Ü	ND	U	ND	_U	NC .	NC	NC
2.4-Dichlorophenol	μg	ND	ū	ND	, U	ND	U.	NC	NC	NC
2.4-Dimethylphenol	μg	ND	U	ND	ñ	ND	JU,	. NC	NC	. NC
2.4-Dinitrophenol	μg	ND	U	ND	_ U	ND	U_	NC	NC	NC
2,4-Dinitrotoluene	μg	ND	<u>n</u>	ND	ñ	ND	U,	NC	NC	NC
2.6-Dinitrotoluene	μg	ND	U	ND	U	ND	Ū	NC	NC	NC
2-Chloronaphthalene	μg	NĎ	U _	ND	U	ND	Ū	_ NC	NÇ	NC
2-Chlorophenol	μg	ND	. U	ND	Ō	ND	U.	NC NC	NC .	NC
2-Meth/Inaphthalene	μg	ND	U	0.79	J/J	ND	U	NC	NC_	NC
1-Methylphenol (o-Cresol)	μg	МD	U.	ND	U	ND	U	NC	NC	NC
2-N troaniline	μg	ND	, , <u>U</u> , ,	, ND	U_	ND	U	NC	NC	NC
2-N trophenol	μg	ND	U	ND	U.	ND	U	NC	NCNC	NC
3.3'-Dichlorobenzidine	μg	ND	U_	_ ND	U	ND	U	NC	NC	NC
3-N troanilme	μg	ND	U	ND	U	ND	U	NC	NC	NC
1.6-Dinitro-2-methylphenol	μg	ND	U	ND	U	ND	U	NC .	NC	NC
4-Bromophenyl-phenyl Ether	μg	ND	U	ND	U	ND	U	NC	NC	NC
4-Chloro-3-methylphenol	μg	ND	U	ND	U	ND	U	NC	NC	NC
4-Chloroaniline	μg	ND	U	ND	U	ND	U	NC	NC	NC
4-Chlorophenyl-phenyl Ether	μд	ND	U	ND	U	ND	U	NC	NC	NC
4-Methylphenol/3-Methylphenol	μg	ND	U	ND	U	ND	U	NC	NC	NC
4-N troaniline	μg	ND	U	ND	U	ND	U	NC	NC	N'C
4-N trophenol	μg	ND	U	ND	U	ND	U	NC	NC	NC
Acenapathene	μg	ND	U	ND	U	ND	U	NC	NC	NC
Acenaphthylene	μg	ND	U	ND	U	ND	U	NC	NC	NC
Anthracene	μg	ND	U	ND	U	ND	U	NC	NC	NC
Benzo(a)anthracene	μg	ND	U	ND	υ	ND	U	NC	NC	NC
Benzo(a)pytene	μg	ND	U	ND	U	ND	U	NC	NC	NC
Benzo(b)fluoranthene	μg	ND	U	ND	U	ND	U	NC	NC	NC
Benzo(g.h. iperylene	μg	ND	U	ND	U	ND	U	NC	NC	NC
Benzo(k)fluoranthene	μg	ND	U	ND	U	ND	Ü	NC	NC	NC
bis(2-C algroethoxy) Methane	μg	ND	U	ND	U	ND	U	NC	NC	NC
his(2-C iloroethyl) Ether	μg	1.3	~	1 4		ND	U	100.00%	100.00%	100 00%
his(2-Ethylhexyl)phthalate		ND	Ü	0.97	J/J	ND	Ŭ	NC	NC	NC
Butylbenzylphthalate	_μg_ σ	ND	Ü	ND	Ü	ND -	U	NC	NC NC	NC NC
Chr. sene	μg	ND	U		<u>Ū</u>	ND .	U	NC	NC	NC
Dibenz(a,h)anthracene	μg	ND	U	ND	U	ND	U	NC	NC NC	NC
Dibenzofuran	μg	ND	U	ND	U	ND		NC NC	NC NC	NC NC
	μg	ND	U.		. U		U U		NC NC	NC NC
Diethylphthalate	μg			ND		ND		NC		
Dimethylphthalate	μg	ND	U	ND	<u>U</u>	ND	U	NC	_NC	NC.
i-n-Butylphthalate	μg	ND	_ U	ND		ND	Ü	NC	NC	NC .
Di-r -Octylphthalate	μg	ND	<mark>U</mark>	ND_	U	ND _	U	NC	NC	NC.
Fluoranthene	μg	ND	U	ND	U_	ND	U	NC .	NC	NC
Fluorene	μg	ND.	U	ND	U	ND	. U	NC	NC	NC
Hexachlorobenzene	μg	, ND	U.	ND	U	ИĎ	. Ų.	NC	NC	, NC
Hexachlorobutadiene	μg	0.64	J/J	0.67	j/J	_ND	U	NC .	NC	NC
Hexachlorocyclopentadiene	_րջ	ND	U	ND	_U	ND	U	NC .	NC _	NC
Hexachloroethane	μg	ND	U,	ND	Ū	ND	Ū	NC	NC	ŅC
Indeno(1,2,3-c,d)pyrene	μg	ND	U	ND	U	ND	U	NC	NC	NC
Isophorone	μg	3.3		4.5		ND	U	100.00%	100.00%	100.00%

Table 3.13 Thermal Oxidizer 2 Results for Method TO-13 (SVOCs) - April 2006 American Chemical Service Griffith, Indiana

_		Sampled 4/13/06									
				Therm-	Ox 2			Dest	Destruction Efficiency		
Compounds	Units	Influe	nt	Influent	Dup	Em	ent	Low	High	Average	
Naphthalene	μg	4.2		5.8		0.88	J/J	NC	NC	NC	
Vitrobe izene	μg	ND	U	ND	U	ND	U	NC	NC	NC	
N-Nitroso-di-n-propylamine	μg	ND	U	ND	U	ND	U	NC	NC	NC	
N-Nitrosodiohenylamine	μg	ND	U	ND	U	ND	U	NC	NC	NC	
Pentachlorophenol	μg	ND	U	ND	U	ND	U	NC	NC	NC	
Phenanthrene	μg	ND	U	ND	U	ND	U	NC	NC	NC	
Phenol	μg	ND	U	ND	U	ND	U	NC	NC	NC	
Pyrene	μg	ND	U	ND	U	ND	U	NC	NC	NC	
Total	μg	22.24	1	28.2.	3	1.5	5	93.03%	94.51%	93.77%	

Notes:

μg = Nicrogram

NC = Not calculated

ND = Non-detect

Destruction efficiencies were not calculated if either influent or effluent samples were estimated.

Pest upt on efficiencies were also not calculated if the effluent result exceeded either influent result.

Total destruction efficiencies that include the estimated results of any individual compound will be considered an estimated value.

Qualifiers:

- = Result is estimated
- 1. Below reported quantitation limit
 - Laboratory data qualifier
 - = Data validation qualifier

Table 3.14 Thermal Oxidizer 2 Results for Method TO-13 (SVOCs) - May 2006 American Chemical Service Griffith, Indiana

·						Sample	d 5/18/0	6		
				Therm-0					uction Effic	
Compounds	Units	Influent		Influent			uent	Low	High	Average
1.2.4-Tachlorobenzene	μg	ND	U	ND	U	ND	U	NC	NC	NC
1.2-Dichlorobenzene	μg	9.8		11		1.2		87.76%	89.09%	88 42%
1.3-Dichlorobenzene	μg .	0.34	J/J	0.35	J/J	ND	U	NC	NC	NC
1.4-Dichlorobenzene	μg	1.2		1.4		ND	U	100.00%	100.00%	100 00%
3.4.5-Trichlorophenol	μg	ND	U	ND	U	, ND	U	NC	NC	NC
1.4.5-Trichlorophenol	μg	ND	U	ND	U	ND	U	NC .	NC	NC
: 4-Dichlorophenol	μg	ND	Ų	ND	U	ND	U	NC	NC	NC
: 4-Dimethylphenol	μg	ND	U,	ND	U	ND	U.	NC .	NC _	NC
4-Dinitrophenol	μg	ĪЙD	U	ND	U_	ND	U	NC	NC	NC
.4-Dinitrotoluene	μg	ND	U.	ND	U,	ND	U	NC	NC	NC
.6-Dinitrotoluene	μg	ND	U	ND	U	ND	U	NC	NC	NC
:-Chloronaphthalene	μg	ND	U	ND	U	ND	U.	NC	NC	NC
2-Cilorophenol	μg	ND	U	ND	U	ND	U	NC	NC	NC
:-Methylnaphthalene	μg	0.61	J/J	0.61	J/J	ND	U	NC	NC	NC
Methylphenol (o-Cresol)	μg	ND	U	ND	U	ND	U	NC	NC	NC
'-Nitro iniline	μg	ND	U	ND	U	ND	U	NC	NC	NC
:-Nitrophenol	μg	ND	U	ND	U	ND	U	NC	NC	NC
3'-Dichlorobenzidine	μg	ND	U	ND	Ü	ND	U	NC	NC	NC
S-Nitro miline	μg	ND	U	ND	U	ND	U	NC	NC	NC
6-Dinitro-2-methylphenol	μg	ND	Ū	ND	U	ND	Ū	NC	NC	NC
-Bromophenyl-phenyl Ether	μg	ND	υ	ND	Ü	ND	U	NC	NC	NC
C iloro-3-methylphenol	μg	ND	U	ND	U	ND	U	NC	NC	NC
C iloroaniline	μg	ND	U	ND	U	ND	U	NC	NC	NC
-Calorophenyl-phenyl Ether	μg	ND	U	ND	U	ND	.U	NC NC	NC	NC
Methylphenol/3-Methylphenol		ND	U	ND		ND	Ü	NC NC	NC	NC
-Nitro and fine	μg	ND	_ Ū	ND	. <u>.</u>	ND	U	NC NC	NC	NC NC
-Nitrophenol	μg	ND	Ū.	ND	U	ND	บ	NC NC	NC NC	NC
\cenaphthene	μg	ND ND	U	ND ND	U			NC NC	NC NC	NC NC
** ** ** ** ** ** ** ** ** ** ** ** **	μg				U	ND	U			
Acenaphthylene	μg	ND	. <u>U</u> _	ND	<u>u</u>	ND	U .	NC.	NC	ŅC
Antoracere	μg	ND	U	ND_		ND	Ū	NC NC	NC NC	NC
Benzo(a)arthracene	μg	ND	ñ	ND	U	ND	Ū	NC	NC	NC
Benzo(a)pyrene	μg	ND	Ū	ND	U .	ND	U	NC	NC	NC
Benzo(b)fluoranthene	µg	ND	U	ND	ū	ND	U	NC_	<u>NC</u>	NC
Benzo(3.h.i)perylene	µg_	ND	U	ND	U	ND	U	NC	NC	NC
Benzo(k)fluoranthene	_μg	ND	U	ND_	U	ND	U	NC _	NC	NC
ois(2-Chloroethoxy) Methane	μg	ND	Ü.	ND	U	ND	U	NC	NC .	NC
ois(2-Chloroethyl) Ether	μg	ND	U	_ ND	Ŭ	ND	U	NC	NC	NC
ois(2-Ethylhexyl)phthalate	μg	11		5.2		. 3	J/J	NC NC	NC	NC
Buts lbe nzy lphthalate	μg	ND	U	ND ND	ū	ND	Ų	NC	NC	NC
Thry sene	μ g	иD	Ū	_ND	, U	ND	, U	NC	NC	NC
Dibenzea, n)anthracene	μg	ND	U	ND	Ū	ND	U	NC	NC	NC
Dibenzofuran	μg	ND	U.	ND	U .	ND	U	NC	NC	NC
Diethy lphthalate	μg	0.78	J/J	0.8	J/J	0.79	J/J	NC	NC	NC
Diniethylphthalate	μg	ND	Ü	ND	. U	ND	U	NC	NC	NC
li-n-Bi ty phthalate	μg	ND	U	ND	U	ND	U	NC	NC	NC
Di-n-Octylphthalate	μg	ND	U	ND	U_	ND	U	NC	NC	NC
luorar thene	μg	ND	U	ND	U	ND	υ	NC	NC	NC
luorer e	μg	ND	U	ND	U	ND	υ	NC	NC	NC
Hes achlorobenzene	μg	ND	U	ND	U	ND	ן ט	NC	NC	NC
les achlorobutadiene	μg	0.57	J/J	0.67	J/J	ND	υ	NC	NC	NC
fes achloroevelopentadiene	μg	ND	U	ND	U	ND	U	NC	NC	NC
les achloroethane	μg	ND	U.	ND	U	ND	Ü	NC	NC .	NC NC
ndeno(1,2,3-c,d)pyrene	μg	ND	U	ND .	U	ND	Ü	NC NC	NC NC	NC NC
	P.5	114	$\overline{}$	110	0	110	- ·	110	110	110

Table 3.14 Thermal Oxidizer 2 Results for Method TO-13 (SVOCs) - May 2006 American Chemical Service Griffith, Indiana

		Sampled 5/18/06										
		Therm-Ox 2						Destruction Efficiency				
Compounds	Units	Influent		Influent Dup		Effluent		Low	High	Average		
Naphtholene	μg	3.4		4.1		1.4		58.82%	65.85%	62.34%		
Nitrobenzene	μg	ND	U	ND	U	ND	U	NC	NC	NC		
N-Nitroso-di-n-propylamine	μg	ND	U	ND	U	ND	U	NC	NC	NC		
N-Nitrosod phenylamine	μg	ND	U	ND	U	ND	U	NC	NC	NC		
Pentachforophenof	μg	ND	U	ND	U	ND	U	NC	NC	NC		
Phenanthrene	μg	ND	U	ND	U	ND	U	NC	NC	NC		
Phenol	μg	ND	U	ND	U	ND	U	NC	NC	NC		
Pyrene	μg	ND	υ	ND	υ_	ND		NC	NC	NC _		
Total	μg	30.50)	27.23	3	6.3	9	76.53%	79.05%	77.79%		

Notes:

µg = Microgram

NC = Not calculated

ND "Non-detect

Destruction efficiencies were not calculated if either influent or effluent samples were estimated.

Destruction efficiencies were also not calculated if the effluent result exceeded either influent result.

Total destruction efficiencies that include the estimated results of any individual compound will be considered an estimated value.

Qualifiers:

= Result is estimated

1. Below reported quantitation limit

Liboratory data qualifier

= Data validation qualitier

CR: .EFC D'unf

Table 3.15 Thermal Oxidizer 2 Results for Method TO-13 (SVOCs) - June 2006 **American Chemical Service** Griffith, Indiana

	T	Γ				Sampled 6/	15/06			
				Therm-				Des	truction Effi	ciency
Compounds	Units	Influen		Influent		Efflue	nt	Low	High	Average
1 2.4-Trichlerobenzene	μg	ND	U	ND	U	ND	U	NC	NC	NC
1.2-Dichlorobenzene	μg	ND	U	ND	U	ND	U	NC	NC	NÇ
1.3-Dichlorobenzene	μg	ND	U	ND	U	ND	U	NC	NC	NC
1Dichlorobenzene	μg	ND.	U	ND	U	ND	U	NC	NC	NC
2 - 5-Trichlorophenol	μg	ND	U	ND	U .	ND	U	NC	NC	NC
2 - 6-Trichlorophenol	μg	ND	U	ND	U	ND	Ų	NC	NC	NC .
2 Dichlorophenol	μg	ND	U	ND_	U	ND.	. U	NC NC	NC	NC
2 Dimethy:phenol	μg	ND	U	ND	Ų	ND	U	NC	NC	NC
2 Dinit ophenol	μg	ND	U	ND	U	ND	U	NC	NC	NC
2 Dinit otoluene	μg	ND	U	ND	U	ND	U	NC	NC	NC
2.5-Dinit otoluene	μg	ND	U	ND	U	ND	U	NC	NC	NC
2-Chloronaphthalene	μg	ND	U	ND	U	ND	U	NC	NC	NC
2-Chlorophenol	μg	ND	U	ND	U	ND	U	NC	NC	NC
2-Methylnaphthalene	μg	ND	U	ND	Ū	ND	U	NC	NC	NC
2 Methylphenol (o-Cresol)	μg	ND	U	ND	Ū	ND	U	NC	NC	NC
2-Nitroariline	μg	ND	 U	ND	Ū	ND	. <u>y</u>	NC	NC	NC
2-Nitrophenol	μg	ND		ND	U	ND	Ü	NC	NC	NC
3.3'-Dich orobenzidine	μg	ND	บ	ND	Ū	ND	Ŭ	NC	NC	NC
3-Nitroar iline	μg	ND	U	ND	U	ND	<u>v</u>	NC	NC	NC
4.6-Dinit o-2-methylphenol		ND	- บ	ND	. U	ND .	U	NC NC	NC	NC NC
	μg		<u>U</u>	ND	U	ND	U	NC NC	NC	NC NC
4-Bromophenyl-phenyl Ether	μg	ND						NC NC	***	
4-Chloro-3-methylphenol	μg	ND	U	ND	U	ND	U		NC NC	NC
4-Chloroaniline	μg	ND	<u>U</u>	ND_	U	ND	- <u>U</u> -	NC NC	NC	NC_
4-Chlorophenyl-phenyl Ether	μg	ND	<u>U</u> _	ND	U	ND	U	NC _	NC	NC
4-Methylphenol/3-Methylphenol	μg	ND	_U	ND	U	ND	U	NC	NC	NC
4-Nitroariline	μg_	ND_	U	ND	U	ND	U	_NC	NC	NC
4-Nitropherol	ĥВ	ND	U	ND	U	ND	U .	NC.	NC_	NC
Acenaphthene	μg	ND	<u>U</u>	ND	^U .	_ ND	U_	NC	NC	NC
Acenaphthylene	μg	ND_	_ <u>U</u>	ND	U	ND	U	NC	NC NC	NC
Arithracene	μg	ND	<u>U</u>	ND	U	ND	<u> U</u>	NC_	NC	NC _
Benzo(a) anthracene	μg	ND	_ U	ND	Ŭ.	ND	U_	NC	NC	NC
Eenzo(a)oyrene	μę	ND	U	ND.	U	ND	U	NC	NC	NC
Fienzo(b)fluoranthene	μg	ND	U __	ND	U	ND	. U_	NC	NC	NC
Elenzo(g, 1,1)perylene	μg	ND	<u>U</u>	ND	U	ND _	. เบ.	NC	NC	NC
Fienzo(k)fluoranthene	μg	ND	U	ND	U	ND	U,	NC	NC	NC
bis(2-Chloroethoxy) Methane	μg	ND	U	ND	Ų	ND	U	NC	NC .	NC
bis(2-Chloroethyl) Ether	μg	ND	U	ND.	U	ND	U	NC	NC	, NC
bis(2-Ethylhexyl)phthalate	μg	26		14	_	19		NC	NC	NC .
Butylbenzylphthalate	μg	ND	U	ND	U	ND	U	NC	NC	NC
Chrysene	μg	ND	U	ND	U	ND	U	NC	NC	NC
Diberiz(a.h)anthracene	μg	ND	U	ND	Ų	ND	υ	NC	NC	NC
Dibenzoturan	μg	ND	U	ND	U	ND	U	NC	NC	NC
Diethylphthalate	μg	ND	U	ND	Ü	0.85	J/J	NC	NC	NC
Dimethylphthalate	μg	ND	U	ND	U	ND	U	NC	NC	NC
ci-n-Butylphthalate	μg	ND	Ü	ND	υ	ND	U	NC	NC	NC
Di-n-Octylphthalate	μg	ND	U	ND	Ü	ND	U	NC	NC	NC
Fluor in thene	μg	ND	U	ND	Ū	ND	U	NC	NC	NC
Fluorene	μg	ND	U	ND	Ü	ND	U	NC	NC	NC NC
Hexachlorobenzene		ND	Ŭ.	ND	U	ND.	U U	NC NC	NC .	NC
I	μg	ND		ND	U	ND _	U.	NC	NC NC	
Hexachlerobutadiene	μg		<u>U</u> .							NC NC
Hexachic rocyclopentadiene	μg	ND_	. U	ND	U	ND	<u>U</u> -	NC NC	NC NC	NC .
Hexachic roethane	μg	ND	U	ND	U	ND	<u>U</u> .	NC NC	NC	NC
Indeno(1.2,3-c.d)pyrene	μg	ND_	- <u>U</u> .	ND	U	ND	. U	NC	NC	NC .
Lophorone	μg	ND	U	ND	U	NĎ	U	NC	NC	NC

Table 3.15 Thermal Oxidizer 2 Results for Method TO-13 (SVOCs) - June 2006 American Chemical Service Griffith, Indiana

		Sampled 6/15/06									
		Therm-Ox 2						Destruction Efficiency			
Compounds	Units	Influe	nt	Influent	Dup	Efflue	nt	Low	High	Average	
Naphthalene	μg	ND	U	ND	U	ND	U	NC	NC	NC	
Nitrobenzene	μg	ND	U	ND	U	ND	υ	NC	NC	NC	
N-Nitrosc-di-n-propylamine	μg	ND	U	ND	U _.	ND	U	NC	NC	NC	
N-Nitroscdiphenylamine	μg	ND	U	ND	U	ND	U]	NC	NC	NC	
Pentachlorophenol	μg	ND	U	ND	U	ND	U	NC	NC	NC	
Phenanth rene	μg	ND	U	ND	U	ND	υſ	NC	NC	NC	
Phenol	μg	ND	U	ND	U	ND	υ	NC	NC	NC	
Pyrene	μg	ND	U	ND	U	ND	υ	NC	NC	NC _	
Total	μg	26.00)	14.00)	19.85	5	NC	NC	NC	

Notes:

 $\mu_2 = Microgram$

NC = Not calculated

ND ≈ Non-detect

Destruction efficiencies were not calculated if either influent or effluent samples were estimated.

Destruction efficiencies were also not calculated if the effluent result exceeded either influent result.

To all destruction efficiencies that include the estimated results of any individual compound will be considered an estimated value.

Qualifiers:

- ≈ Result is estimated
- L = below reported quantitation limit
 - = Lat oratory data qualifier
- = Data validation qualifier

Table 3.16 SBPA and Off-Site ISVE System Results for Method TO-13 (SVOCs) - April 2006 American Chemical Service Griffith, Indiana

) 1	Sampled 4/13/2006						
Compounds	Units	SBPA	SVE	Off-Site	ISVE			
1,2,4-Trichlorobenzene	μg	ND	U	0.87	J/.			
1,2-Dichlorobenzene	μg	24		32				
1,3-Dichlorobenzene	μg	2.1		1				
1,4-Dichlorobenzene	μg	5.5		3.6				
2,4,5-Trichlorophenol	μg	ND	υ	ND	1			
2,4,6-Trichlorophenol	μg	ND	U	ND	1			
2,4-Dichlorophenol	μg	ND	U	ND				
2,4-Dimethylphenol	μg	ND	U	ND				
2,4-Dinitrophenol	μg	ND	U	ND	Ţ			
2,4-Dinitrotoluene	μg	ND	U	ND	ı			
2,6-Dinitrotoluene	μg	ND	U	ND	į			
2-Chloronaphthalene	μg	ND	U	ND	ī			
2-Chlorophenol	μg	ND	U	ND	U			
2-Methylnaphthalene	μg	6.4		7.3				
2-Methylphenol (o-Cresol)	μg	ND	U	ND	ı			
2-Nitroaniline	μg	ND	U	ND				
2-Nitrophenol	μд	ND	U	ND	ī			
3,3'-Dichlorobenzidine	μg	ND	U	ND	<u>`</u>			
3-Nitroaniline	μg	ND	U	ND				
4,6-Dinitro-2-methylphenol	μg	ND	U	ND	<u>i</u>			
4-Bromophenyl-phenyl Ether	μg	ND	U	ND	<u>_</u>			
4-Chloro-3-methylphenol	μg	ND	U	ND	ι			
1-Chloroaniline	μg	ND	U	ND	<u>_</u> U			
1-Chlorophenyl-phenyl Ether	μg	ND	U	ND	U			
1-Methylphenol/3-Methylphenol	μg	ND	U	ND	U			
I-Nitroaniline	μg	ND	U	ND	<u>U</u>			
l-Nitrophenol	μg	ND	U	ND	U			
Acenaphthene	με	ND	U	ND	U			
Acenaphthylene	μg	ND	U	ND	U			
Anthracene	μg	ND	U	ND	U			
Benzo(a)anthracene	μg	ND	U	ND	U			
Benzo(a)pyrene	μg	ND	U	ND	U			
Benzo(b)fluoranthene	μg	ND	U	ND	U			
Benzo(g,h,i)perylene	μg	ND	U	ND	U			
Benzo(k)fluoranthene	μg	ND	U	ND	U			
is(2-Chloroethoxy) Methane	μg	ND	U	ND	U			
is(2-Chloroethyl) Ether	μg	1.2		3.6				
is(2-Ethylhexyl)phthalate	μg	1.7	J/J	4 3]/J			
Butylbenzylphthalate	μg	ND	υ	ND	U			
Chrysene	μg	ND	U	ND	U			
Dibenz(a,h)anthracene	μg	ND	U	ND	U			
Dibenzofuran	μg	ND	U	ND	Ū			
Diethylphthalate	μg	0.63	J/J	0.37				
Dimethylphthalate	μg	ND	U	ND	U			
i-n-Butylphthalate	μg	ND	U	ND	υ			
i-n-Octylphthalate	μg	ND	U	ND	U			
luoranthene		ND	U	ND	U			
luorene	μg	ND	U	ND	<u>U</u>			
exachlorobenzene	μg	ND	U	ND	U			
exachlorobutadiene	μg	2.9		2.5				
	μg				F/F			
exachlorocyclopentadiene	μg	ND	U	15				
exachloroethane	μg	ND	U	ND	<u>U</u> _			
ophorone	μg μg	ND 2.3	U	ND 18	<u>_U</u>			

*11

Table 3.16 SBPA and Off-Site ISVE System Results for Method TO-13 (SVOCs) - April 2006 **American Chemical Service** Griffith, Indiana

		Sampled 4/13/2006					
Compounds	Units	SBPA IS	SVE	Off-Site I	SVE		
Naphthalene	μg	9.3		35			
Nitrobenzene	μg	ND	U	ND	U		
N-Nitroso-di-n-propylamine	μg	ND	U	CIN	U		
N-Nitrosodiphenylamine	μg	ND	U	ND	U		
Pentachlorophenol	μg	ND	U	ND	U		
Phenanthrene	μg	ND	U	ND	U		
Phenol	μg	ND	บ	ND	U		
Ругепе	μg	ND	U	ND	U		
Total	μg	56.03 110.54					

Notes:

- µg ≈ Microgram
 NC = Not calculated
- ND = Non-detect

Oualifiers:

- J = Result is estimated
- U = Below reported quantitation limit
- _/ = Laboratory data qualifier / = Data validation qualifier

:10

Table 3.17 SBPA and Off-Site ISVE System Results for Method TO-13 (SVOCs) - May 2006 American Chemical Service Griffith, Indiana

		Sampled 5/18/2006						
Compounds	Units	SBPA I	SVE	Off-Site	ISVE			
1,2,4-Trichlorobenzene	μg	ND	U	1.2				
1,2-Dichlorobenzene	μg	28		37				
1,3-Dichlorobenzene	μg	2.8		1.3				
1,4-Dichlorobenzene	μg	6.6		4.4				
2,4,5-Trichlorophenol	μg	ND	U	ND	U			
2,4,6-Trichlorophenol	μg	ND	U	ND	U			
2,4-Dichlorophenol	μв	ND	U	ND	υ			
2,4-Dimethylphenol	μg	ND	U	ND	U			
2,4-Dinitrophenol	μg	ND	υ	ND	U			
2,4-Dinitrotoluene	μg	ND	U	ND	U			
2,6-Dinitrotoluene	μg	ND	Ū	ND	U			
2-Chloronaphthalene	μg	ND	U	ND	U			
2-Chlorophenol	μg	ND	U	ND	Ū			
2-Methylnaphthalene	μg	7.1		7.8				
2-Methylphenol (o-Cresol)		ND	U	ND	U			
2-Nitroaniline	μg	ND	บ	ND	<u>U</u>			
2-Nitrophenol	μg	ND ND	บ	ND ND	U			
3,3'-Dichlorobenzidine	μg	ND	U	ND	<u>U</u>			
3-Nitroaniline	μg	ND ND	U	ND	<u>U</u>			
	μg	ND ND	U	ND	<u>u</u>			
4,6-Dinitro-2-methylphenol	μg		U	ND ND				
4-Bromophenyl-phenyl Ether	μg	ND_			<u> </u>			
4-Chloro-3-methylphenol	μg	ND	Ü	ND	<u>U</u>			
4-Chloroaniline	μg	ND_	U	ND	<u>U</u>			
4-Chlorophenyl-phenyl Ether	μg	ND_	U	ND_	<u> </u>			
1-Methylphenol/3-Methylphenol	μg	ND_	U	ND	<u>U</u> _			
1-Nitroaniline	μg	ND ND	U	ND	<u>U</u>			
I-Nitrophenol	₽В	ND_	U	ND_	U			
Acenaphthene	μg	ND	U	ND	<u>U</u>			
Acenaphthylene	μg	ND	U	ND	<u> </u>			
Anthracene	μg	ND	U	ND_	U			
Benzo(a)anthracene	μg	ND	U	ND_	U			
Benzo(a)pyrene	µв	ND_	U	ND	U			
Benzo(b)fluoranthene	µв	ND_	U	ND	U			
Benzo(g,h,i)perylene	μв	ND	U	ND	U			
Benzo(k)fluoranthene	μg	ND_	U	ND	U			
is(2-Chloroethoxy) Methane	μg	ND	U	ND	U			
is(2-Chloroethyl) Ether	μg	ND	U	ND	U			
is(2-Ethylhexyl)phthalate	μg	7		9.3				
utylbenzylphthalate	μg	ND	U	ND	U			
hrysene	μg	ND	U	ND	U			
Dibenz(a,h)anthracene	μg	ND	U	ND	U			
Pibenzofuran	μg	ND	U	ND	U			
Piethylphthalate	μg	0.62	J/J	1.4	J/J			
imethylphthalate	μg	ND	U	ND	U			
i-n-Butylphthalate	μg	ND	U	ND	U			
i-n-Octylphthalate	μg	ND	U	ND	U			
luoranthene	μg	ND	U	ND	U			
luorene	μg	ND	U	ND	U			
exachlorobenzene	μg	ND	U	ND	U			
exachlorobutadiene		5		3.1				
exachlorocyclopentadiene	μg	ND	U	2.6]/]			
	μg		บ		U			
exachloroethane	µg	ND		ND				
deno(1,2,3-c,d)рутепе ophorone	μ <u>g</u> μg	ND 2.5	<u> </u>	ND 20	U			

61:1

1.1

411

Table 3.17 SBPA and Off-Site ISVE System Results for Method TO-13 (SVOCs) - May 2006 American Chemical Service Griffith, Indiana

		Sampled 5/18/2006						
Compounds	Units	SBPA IS	VE	Off-Site I	SVE			
Naphthalene	μg	11		.36				
Nitrobenzene	μg_	ND	U_	_ND	U			
N-Nitroso-di-n-propylamine	μg	ND	U	ND_	U			
N-Nitrosodiphenylamine	μg	ND	U_	_ND	U			
Pentachlorophenol	μg	ND	U	ND	U			
Phenanthrene	μg	ND	U	ND	U			
Phenol	μg	ND	U	_ND	U			
Ругепе	μg	ND	U_	ND	U			
Total	μg	70.62		124.10				

Notes:

μg = Microgram

NC = Not calculated

ND = Non-detect

Qualifiers:

= Result is estimated

U = Below reported quantitation limit

/ = Laboratory data qualifier
/_ = Data validation qualifier

Table 3.18 SBPA and Off-Site ISVE System Results for Method TO-13 (SVOCs) - June 2006 American Chemical Service Griffith, Indiana

		Sampled 6/15/2006						
Compounds	Units	SBPA I	SVE_	Off-Site ISVE				
1,2,4-Trichlorobenzene	μg	ND	U	0.88	J/			
1,2-Dichlorobenzene	μg	5.6		24				
1,3-Dichlorobenzene	μg	0.48	J/J	0.76	J			
1,4-Dichlorobenzene	μg	1.2		2.8				
2,4,5-Trichlorophenol	μg	ND	U	CIN				
2,4,6-Trichlorophenol	μg	ND	U	NID				
2,4-Dichlorophenol	μg	ND	U	ND	ı			
2,4-Dimethylphenol	μg	ND	บ	ND	t			
2,4-Dinitrophenol	μg	ND	U	ND	{			
2,4-Dinitrotoluene	μg	ND	U	ND	L			
2,6-Dinitrotoluene	μg	ND	U	CIN	į			
2-Chloronaphthalene	μg	ND	U	ND	l			
2-Chlorophenol	μg	ND	U	ND	L			
2-Methylnaphthalene	μg	0.93	J/J	4.2				
2-Methylphenol (o-Cresol)	μg	ND	U	ND	L			
2-Nitroaniline	μg	ND	U	מא	l			
2-Nitrophenol	μg	ND	บ	ND	ι			
3,3'-Dichlorobenzidine	μg	ND	υ	ND	ι			
3-Nitroaniline	μg	ND	U	ND	ι			
1,6-Dinitro-2-methylphenol	μg	ND	U	ND	υ			
-Bromophenyl-phenyl Ether	μg	ND	U	N.D	U			
l-Chloro-3-methylphenol	μg	ND	U	ND				
-Chloroaniline	μg	ND	U	ND	U			
-Chlorophenyl-phenyl Ether	μg	ND	U	ND	U			
-Methylphenol/3-Methylphenol	μg	ND	U	ND	υ			
-Nitroaniline	μg	ND	U	ND	U			
-Nitrophenol	μg	ND	υ	ND	U			
cenaphthene	μg	ND	υ	ND	υ			
Acenaphthylene	μg	ND	U	ND	U			
Anthracene	μg	ND	U	ND	U			
Senzo(a)anthracene	μg	ND	U	ND	U			
Senzo(a)pyrene	μg	ND	U	ND	υ			
enzo(b)fluoranthene	μg	ND	U	ND	U			
lenzo(g,h,i)perylene	μg	ND	U	ND	U			
lenzo(k)fluoranthene	μg	ND	U	ND	U			
is(2-Chloroethoxy) Methane	μg	ND	U	ND	U			
is(2-Chloroethyl) Ether	μg	0.84	J/J	2.1				
is(2-Ethylhexyl)phthalate	μg	8.6		3.4	3/3			
utylbenzylphthalate	μg	ND	U	ND	U			
hrysene	μg	ND	υ	ND	U			
ibenz(a,h)anthracene	μg	ND	U	ND	U			
ibenzofuran	μg	ND	U	ND	U			
iethylphthalate	μg	ND	U	1.4	3/3			
imethylphthalate	μg	ND	U	ND	U			
-n-Butylphthalate	μg	ND	U	ND	U			
i-n-Octylphthalate	μg	ND	U	ND	U			
uoranthene	μg	ND	U	ND	U			
uorene	μg	ND	U	ND	U			
exachlorobenzene	μg	ND	U	ND	Ū			
exachlorobutadiene	μg	0.92	J/J	2.				
exachlorocyclopentadiene	μg	ND	U	ND	U			
exachloroethane	μg	ND	U	ND	U			

11.1

Table 3.18 SBPA and Off-Site ISVE System Results for Method TO-13 (SVOCs) - June 2006 American Chemical Service Griffith, Indiana

		Sampled 6/15/2006						
Compounds	Units	SBPA IS	SBPA ISVE		SVE			
Indeno(1,2,3-c,d)pyrene	μg	ND	U	ND	U			
Isophorone	μg	ND	U_	12				
Naphthalene	μв	1.6		22				
Nitrobenzene	μg	ND	υ	ND	υ			
N-Nitroso-di-n-propylamine	μg	ND	U	ND	U			
N-Nitrosodiphenylamine	μg	ND	U	ND	U			
Pentachlorophenol	μg	ND	U	ND	U			
Phenanthrene	μg	ND	U	ND	U			
Phenol	μg_	ND	U	ND	U			
Рутепе	μg	ND	U	ND	U_			
Total	μg	20.17		75.54				

Notes:

μg = Microgram
NC = Not calculated

ND = Non-detect

Qualifiers:

1.1

H18

J = Result is estimated

U = Below reported quantitation limit

_/ = Laboratory data qualifier
/_ = Data validation qualifier

Table 3.19 Off-Site In-Situ Vapor Extraction (ISVE) System Well Monitoring Data Second Quarter 2006 American Chemical Service NPL Site Griffith, Indiana

Well ID	Date	Flow	Vac	VOCs	Comments
<u></u>		(cfm)	(" H ₂ O)	(ppm)	
01/2.01	4/21/2006	Water	98	Water	
SVE-01	5/24/2006	Water	100	72	<u> </u>
	6/22/2006	Water	93	52	
1	4/21/2006	14	88	448	
SVE-02	5/24/2006	12	92	44	
	6/22/2006	88	84	168	<u> </u>
ł	4/21/2006	Water	82	84	
SVE-03	5/24/2006	Water	91	12	
	6/22/2006	Water	77	297	
	4/21/2006	Water	106	492	
SVE-04	5/24/2006	Water	110	46	ļ
	6/22/2006	Water	103	106	
	4/21/2006	Water	94	62	1
SVE-05	5/24/2006	Water	101	93	
	6/22/2006	Water	90	67	_
	4/21/2006	Water	76	Water	
SVE-06	5/24/2006	Water	81	156	
	6/22/2006	Water	70	58	
	4/21/2006	Water	68	3	
SVE-07	5/24/2006	Water	72	85	
	6/22/2006	Water	66	93	
	4/21/2006	Water	84	Water	
SVE-08	5/24/2006	Water	90	59	
	6/22/2006	Water	79	71	
	4/21/2006	57	30	693	
SVE-09	5/24/2006	56	28	129	
	6/22/2006	45	18	49	
	4/21/2006	11	30	257	
SVE-10	5/24/2006	42	32	172	
	6/22/2006	42	20	68	
	4/21/2006	196	88	264	
SVE-11	5/24/2006	274	96	105	
5.21.	6/22/2006	330	84	65	
	4/21/2006	196	86	>9999	
SVE-12	5/24/2006	Water	88	53	
5 V L-12	6/22/2006	Water	80	65	
	4/21/2006	12	87	23	
CVE 12	 				
SVE-13	5/24/2006	14	80	397	
	6/22/2006	12		220	
CVE 14	4/21/2006	Water	70	2379	
SVE-14	5/24/2006	51	80	3144	
	6/22/2006		64	1692	
CVP 15	4/21/2006	60	44	288	
SVE-15	5/24/2006	101	50	64	
	6/22/2006	108	40	539	
a	4/21/2006	Water	56	1032	
SVE-16	5/24/2006	Water	64	54	
	6/22/2006	47	48	1239	
	4/21/2006	Water	92	Water	
SVE-17	5/24/2006	Water	97	224	
	6/22/2006	Water	86	368	
	4/21/2006	10	90	236	
SVE-18	5/24/2006	7	94	284	
	6/22/2006	17	83	2362	

Table 3.19 Off-Site In-Situ Vapor Extraction (ISVE) System Well Monitoring Data Second Quarter 2006 American Chemical Service NPL Site Griffith, Indiana

Well ID	Date	Flow (cfm)	Vac (" H ₂ O)	VOCs (ppm)	Comments
· · · · · · · · · · · · · · · · · · ·	4/21/2006	161	98	81	
SVE-19	5/24/2006	93	108	104	
	6/22/2006	Water	88	79	1
	4/21/2006	23	59	72	
SVE-20	5/24/2006	21	68	80	
	6/22/2006	Water	70	69	
	4/21/2006	60	60	86	
SVE-21	5/24/2006	66	70	84	
	6/22/2006	57	80	86	
	4/21/2006	Water	89	2088	
SVE-22	5/24/2006	70	94	3237	
	6/22/2006	70	83	2093	
	4/21/2006	Water	43	2057	
SVE-23	5/24/2006	Water	50	2795	
	6/22/2006	Water	40	1921	1
	4/21/2006	53	56	1365	
SVE-24	5/24/2006	54	48	2259	
5.22.	6/22/2006	75	34	1854	
	4/21/2006	Water	56	1365	
SVE-25	5/24/2006	104	60	1676	
5 · L-25	6/22/2006	Water	48	1360	
	4/21/2006	173	88	255	
SVE-26	5/24/2006	31	88	184	
3 V E - 20	 		78	322	
	6/22/2006	Water	90	1027	ļ
CVE 22	4/21/2006	Water			
SVE-27	5/24/2006	56	97	1129	
	6/22/2006	Water	85	963	
C) / C 20	4/21/2006	32	92	343	
SVE-28	5/24/2006	27	98	326	
	6/22/2006	31	82	404	
0	4/21/2006	6	25	213	<u> </u>
SVE-29	5/24/2006	53	52	758	
	6/22/2006	Water	36	644	
	4/21/2006	149	92	97	
SVE-30	5/24/2006	15	99	352	
	6/22/2006	13	88	713	
	4/21/2006	14	84	133	
SVE-31	5/24/2006	Water	51	94	
	6/22/2006	11	44	247	
	4/21/2006	64	65	168	
SVE-32	5/24/2006	72	67	182	
	6/22/2006	41	36	236	
	4/21/2006	16	90	84	
SVE-33	5/24/2006	14	94	98	
	6/22/2006	8	46	146	
	4/21/2006	88	65	956	
SVE-34	5/24/2006	82	68	1150	
	6/22/2006	65	52	892	
	4/21/2006	183	50	77	· · · · · · · · · · · · · · · · · · ·
SVE-35	5/24/2006	Water	75	156	
	6/22/2006	10	46	248	
	4/21/2006	11	90	1032	
SVE-36	5/24/2006	12	97	1018	
	J. 27/ 4000	**	85	237	

Table 3.19 Off-Site In-Situ Vapor Extraction (ISVE) System Well Monitoring Data Second Quarter 2006 American Chemical Service NPL Site Griffith, Indiana

Well ID	Date	Flow (cfm)	Vac (" H ₂ O)	VOCs (ppm)	Comments
	4/21/2006	Water	106	Water	
SVE-37	5/24/2006	Water	112	143	
	6/22/2006	8	62	145	
	4/21/2006	135	65	873	
SVE-38	5/24/2006	119	77	896	
	6/22/2006	57	42	904	
	4/21/2006	59	45	120	
SVE-39	5/24/2006	65	48	105	
	6/22/2006	32	41	183	
	4/21/2006	Water	45	1660	
SVE-40	5/24/2006	145	51	783	
	6/22/2006	45	38	786	
	4/21/2006	55	52	883	
SVE-41	5/24/2006	64	55	833	
	6/22/2006	25	40	693	
	4/21/2006	27	84	310	
SVE-42	5/24/2006	30	89	214	
	6/22/2006	10	43	246	

Notes:

it ti

Differential pressure is no longer measured.

In April 2006, velocity was measured using a VelociCheck 8330. Flow was calculated by multiplying the velocity by the cross-sectional area of the pipe (0.049 ft²).

[&]quot;." = Data not collected

[&]quot;Water" = Water present in vapor stream, preventing data collection

Beginning in March 2006, flow is measured using a VelociCalc 8384 flow meter.

Tubic 3.20

Off-Site In-Situ Vapor Extraction (ISVE) System Header Monitoring Data - Second Quarter 2006 American Chemical Service NPL Site Griffith, Indiana

Date	KP1 Line Press (psia)	KP1 Flow (scfm)	KP1 Vac ('' H₂O)	KP2 Line Press (psia)	KP2 Flow (scfm)	KP2 Vac (" H ₂ O)	OFCA1 Vac (" H ₂ O)	OFCA2 Vac (" H ₂ O)	OFCA3 Vac (" H ₂ O)	Dilution Flow (cfm)	Blower Inf Line Press (psia)	Blower Inf Flow (scfm)
4/21/2006	11.5	1198	88	11.6	711	86	86	82	86	0	11.3	1186
5/24/2006	11.4	1190	92	11.4	687	92	91	82	92	0	11.1	1175
6/22/2006	13.1	1264	46	13.2	0	43	43	35	41	0	12.9	793

Date	Blower Inf Vac (" H2O)	Blower Inf VOC (ppm)	Blower Inf Temp. (°F)	Blower Eff Line Press (psia)	Blower Eff Flow (scfm)	Blower Eff Press (" H ₂ O)	Blower Eff VOC (ppm)	Blower Eff Temp. (°F)	Filter Diff Press (" H ₂ O)	Ambient Temperature (°F)	Barometric Pressure ("Hg)	Humidity (%)
4/21/2006	94	-	62	15.2	596	14.0	-	143	0.0	69	29.91	55%
5/24/2006	100	-	64	15.2	611	13.0	-	70	5.5	77	30.01	63%
6/22/2006	52	-	72	15.3	950	16.0		55	7.0	80	29.99	75%

Notes:

"-" = data not collected

cfm = cubic feet per minute

" H₂0 = inches of water

ppm = parts per million

VOCs = volatile organic compounds

psia = pounds per square inch, atmosphere

" Hg = inches of mercury

F = degrees Fahrenheit

Table 3.21 SBPA In-Situ Vapor Extraction (ISVE) System Well Monitoring Data Second Quarter 2006 American Chemical Service NPL Site

ысяп	Chemica	Service
	Griffith,	Indiana

Well ID	Date	Flow (cfm)	Vac (" H ₂ O)	VOCs (ppm)	Comments
	4/21/2006	31	40	93	
SVE-43	5/24/2006	26	89	63	
	6/22/2006	25	84	187	
	4/21/2006	14			Air injection well
SVE-44	5/24/2006	Water	92	122	
	6/22/2006	19	88	542	
	4/21/2006	12	45	142	
SVE-45	5/24/2006	15	92	34	
	6/22/2006	12	86	198	
	4/21/2006	16	45	153	
SVE-46	5/24/2006	Water	93	35	
	6/22/2006	24	88	211	
	4/21/2006	15	48	259	
SVE-47	5/24/2006	15	96	273	<u> </u>
	6/22/2006	22	91	875	
	4/21/2006	19	96	444	
SVE-48	5/24/2006	Water	98	66	
0.2.0	6/22/2006	Water	>100	938	
	4/21/2006		 	 - /35 -	
SVE-49	5/24/2006	19	>100	1118	
0.2.	6/22/2006	22	1 - 100		Air injection well
	4/21/2006	13	36	198	All injection wen
SVE-50	5/24/2006	22	- 30	176	Air injection well
31L-30	6/22/2006	205	79	105	All injection wen
	4/21/2006	14	73	105	
SVE-51	5/24/2006	7	>100	55	
342-57	6/22/2006	20	-100		A in injuration well
			 	 	Air injection well
SVE-52	4/21/2006		 	-	
3 V E-32	5/24/2006		 		
	6/22/2006			 	
SVE-53	4/21/2006	<u>-</u>	 		
34E-33	5/24/2006		 		<u> </u>
	6/22/2006		 	<u> </u>	
SVE-54	4/21/2006	<u> </u>	 	<u> </u>	A 12 1 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
5VE-34	5/24/2006	19	- 100	-	Air injection well
	6/22/2006	Water	>100	1445	
OVE 66	4/21/2006	17	40	304	
SVE-55	5/24/2006	24	89	901	
	6/22/2006	20	84	1610	
01 07 66	4/21/2006	32	40	233	
SVE-56	5/24/2006	24	94	694	Variable Flow
	6/22/2006	71	88	481	
A1 #2 -=	4/21/2006	Water	39	214	<u> </u>
SVE-57	5/24/2006	Water	88	248	ļ
	6/22/2006	27	82	266	
	4/21/2006	14	48	1178	
SVE-58	5/24/2006	Water	99	214	ļ
	6/22/2006	Water	94	1810	
	4/21/2006	6	-		Air injection well
SVE-59	5/24/2006	Water	>100	58	
	6/22/2006	Water	>100	904	
	4/21/2006	14	82	744	
SVE-60	5/24/2006	16	>100	114	
	6/22/2006	10	>100	1201	

Table 3.21 SBPA In-Situ Vapor Extraction (ISVE) System Well Monitoring Data Second Quarter 2006 American Chemical Service NPL Site Griffith, Indiana

Well ID	Date	Flow (cfm)	Vac (" H ₂ O)	VOCs (ppm)	Comments
	4/21/2006	-		-	
SVE-61	5/24/2006	-	-	-	
	6/22/2006	-	-	-	
	4/21/2006	-	-		
SVE-62	5/24/2006	•		-	
	6/22/2006		-	-	
	4/21/2006	19	43	200	
SVE-63	5/24/2006	32	97	802	
	6/22/2006	-	-		
	4/21/2006	6	44	419	
SVE-64	5/24/2006	20	91	1491	
	6/22/2006				
	4/21/2006			 	
SVE-65	5/24/2006	41	86	1729	
5.203	6/22/2006	21	1	†	Air injection well
·	4/21/2006	12	78	2093	All injection well
SVE-66	5/24/2006	Water	>100	7988	
3 V L-00	6/22/2006	24	>100	3801	
				633	
SVE-67	4/21/2006	Water	50	1369	
3 V E-01	5/24/2006				
	6/22/2006	Water	>100	2507	
CV/IT 40	4/21/2006	42	48	363	
SVE-68	5/24/2006	Water	88	1107	
	6/22/2006	Water	84	>9999	
01 ID 40	4/21/2006	26	38	175	
SVE-69	5/24/2006	Water	88	1569	
	6/22/2006	Water	78	661	
	4/21/2006	20	94	1377	<u> </u>
SVE-70	5/24/2006	28	61	556	
	6/22/2006	22	>100	315	
	4/21/2006	18	84	305	
SVE-71	5/24/2006	26	>100	873	
	6/22/2006	20	-		Air injection well
	4/21/2006	<u> </u>		<u> </u>	
SVE-72	5/24/2006		-		
	6/22/2006		-		<u> </u>
	4/21/2006		•	<u> </u>	
SVE-73	5/24/2006	21			Air injection well
	6/22/2006				
	4/21/2006	14	47	2085	
SVE-74	5/24/2006	28	98	8953	
	6/22/2006	22	94	3003	T
	4/21/2006	196	54	434	
SVE-75	5/24/2006	159	90	603	
	6/22/2006	150	86	655	
	4/21/2006	23	48	621	T
SVE-76	5/24/2006	51	91	267	
	6/22/2006	47	87	2952	
	4/21/2006	19	- "		Air injection well
SVE-77	5/24/2006				1
O + L- / /	6/22/2006		: +		
	4/21/2006	45	54	199	
SVE-78					
O 1 L-10	5/24/2006	-	-	-	1

Table 3.21 SBPA In-Situ Vapor Extraction (ISVE) System Well Monitoring Data Second Quarter 2006 American Chemical Service NPL Site Griffith, Indiana

Well ID	Date	Flow (cfm)	Vac (" H ₂ O)	VOCs (ppm)	Comments
	4/21/2006	11	50	238	7
SVE-79	5/24/2006	27	· .		Air injection well
	6/22/2006	28	95	212	
	4/21/2006	56	-	-	Air injection well
SVE-80	5/24/2006	48	100	115	
	6/22/2006	12	>100	1189	
	4/21/2006	12	62	687	
SVE-81	5/24/2006	26	-	•	Air injection well
	6/22/2006	34	>100	95	
	4/21/2006	16	42	287	Ţ
SVE-82	5/24/2006	20	98	506	
	6/22/2006	20	-	-	Air injection well
	4/21/2006	22	>100	1231	
SVE-83	5/24/2006	Water	>100	242	
	6/22/2006	24	>100	2389	
	4/21/2006	24	-	-	Air injection well
VE-84	5/24/2006	40	90	128	
	6/22/2006	•			
	4/21/2006	14	49	2810	
VE-85	5/24/2006	24	100	4732	
	6/22/2006	24	95	4005	
	4/21/2006	22	45	925	
VE-86	5/24/2006	21	95	655	
	6/22/2006	16	91	773	
	4/21/2006	18	77	1290	
VE-87	5/24/2006	Water	65	1465	
	6/22/2006	12	62	260	
	4/21/2006	-	<u> </u>	<u> </u>	
VE-88	5/24/2006	-		-	
	6/22/2006	-	•	-	

Notes:

Beginning in March 2006, flow is measured using a VelociCalc 8384 flow meter.

Differential pressure is no longer measured.

In April 2006, velocity was measured using a VelociCheck 8330. Flow was calculated by multiplying the velocity by the cross-sectional area of the pipe (0.049 ft²).

^{-&}quot; = Data not collected

[&]quot;Water" = Water present in vapor stream, preventing data collection

Table 1 22

SBPA In-Situ Vapor Extraction (ISVE) System Header Monitoring Data - Second Quarter 2006 American Chemical Service NPL Site Griffith, Indiana

Date	Line Press (psia)	Flow (scfm)	Vac (" H₂O)	Line Press (psia)	Flow (scfm)	Vac (" H₂O)	Dilution Flow (cfm)	Blower Inf Line Press (psia)	Blower Inf Flow (scfm)	Blower Inf Vac (" H2O)	Blower Inf VOC (ppm)
4/21/2006	12.8	0	52	12.8	167	52	0	11.1	380	100	NM
5/24/2006	11.4	0	93	11.3	308	94	0	11.1	0	100	NM
6/22/2006	11.7	0	85	11.5	353	89	0	11.1	982	100	NM

Date	Blower Inf Temp. (°F)	Blower Eff Line Press (psia)	Blower Eff Flow (scfm)	Blower Eff Press (" H ₂ O)	Blower Eff VOC (ppm)	Blower Eff Temp. (*F)	Filter Diff Press (" H ₂ O)	Ambient Temperature (*F)	Barometric Pressure ("Hg)	Humidity (%)
4/21/2006	40	15.1	1293	11.5	•	128	7.0	69	29.91	55%
5/24/2006	60	14.9	1095	3.0		158	6.5	77	30.01	63%
6/22/2006	40	14.7	1136	0.0	•	159	6.5	80	29.99	75%

Notes:

"-" = data not collected

cfm = cubic feet per minute

" H_20 = inches of water

ppm = parts per million

VOCs = volatile organic compounds

psia = pounds per square inch, atmosphere

" Hg = inches of mercury

°F = degrees Fahrenheit

Table 3.23 Schedule of Product Removal Activities - Second Quarter 2006 **American Chemical Service** Griffith, Indiana

Date	Well	Amount of Product Removed
April 25, 2006	SVE-72	8 gallons
May 3, 2006	SVE-53	25 gallons
May 15, 2006	SVE-53	25 gallons
June 23, 2006	SVE-53	50 gallons
June 29, 2006	SVE-72	20 gallons
June 30, 2006	SVE-53	35 gallons

يادر و	ردالا المسيون والتنصير المسيرة والمستقال المستقال المستقال المستقال المستقال المستقال المستقال المستقال المستقال
Total Product Removed	163 gallons

Table 6.1 Water Table Elevations Across the Barrier Wall and Near the PGCS - Second Quarter 2006 American Chemical Service NPL Site Griffith, Indiana

Upper Aquifer Wells

	R	eference Poi	nts	6/9	/2006		Difference Across
Well Designation	East	North	TOIC	Level	Elevation	Notes	Barrier Wall (if applicable) ¹
MW11	6377	7329	640.47	6.83	633.64	1.0165	n/a
MW13	5050	7814	634.08	3.92	630.16		n/a
MW/37	5395	7976	636.78	5.89	630.89		n/a
MW46	4526	7424	633.32	3.06	630.26		n/a
MW48	5669	7814	636.36	5.33	631.03		n/a
MW49	5551	7650	637.00	5.85	631.15		n/a

Staff Gauges & Piezometers

	R	eference Poi	nts	6/9	/2006		Difference Across
Well Designation	East	North	TOSG	Level	Elevation	Notes	Barrier Wall (if applicable) ¹
P23	4689	7018	636.18	7.22	628.96		n/a
P25	5131	7510	633.33	3.52	629.81		n/a
P26	4764	7309	634.23	4.58	629.65		n/a
P27	4904	7020	639.70	10.16	629.54		n/a
P28	5883	7486	644.53	11.41	633.12		n/a
P32	5746	7026	642.32	12.45	629.87		n/a
P40	5931	7241	638.77	5.43	633.34		n/a
P41	5663	7377	637.23	4.52	632.71		n/a
P49	5145	6949	638.98	10.78	628.20	Dry	n/a
SG13	4819	7209	631.53	4.68	630.21		n/a

FGCS Piezometer Sets

	F	teference Poi	nts	6/9	/2006		Difference Acros
	1	1	Į.				Barrier Wall
Well Designation	East	North	TOC	Level	Elevation	Notes	(if applicable)
P81	5577	7581	636.19	4.75	631.44	Dry	n/a
P82	5577	7572	635.77	5.41	630.36	Dry	n/a
P83	5577	7561.6	635.95	4.95	631.00		n/a
P84	5322	7603	634.35	4.60	629.75		n/a
P85	5326	7594	634.08	4.29	629.79		n/a
P86	5329	7585	634,41	4.55	629.86		n/a
P87	5121	7466	633.88	3.44	630.44		n/a
P88	5130	7460	633.90	4.54	629.36		n/a
P89	5137	7454	634.02	4.52	629.50		n/a
P90	4881	7152	634.45	6.72	627.73		n/a
P91	4889	7145	634.59	7.30	627.29		n/a
P92:	4896	7138.1	633.87	6.45	627.42		n/a

Table 6.1
Water Table Elevations Across the Barrier Wall and Near the PGCS - Second Quarter 2006
American Chemical Service NPL Site
Griffith, Indiana

BWES Water Level and Piezometer Pairs

	P	Reference Poi	nts	6/9	/2006		Difference Across
	1	1	1	ł	l _ i		Barrier Wall
Well Designation	East	North	TOC	Level	Elevation	Notes	(if applicable)1
P93R - Outside BW	TBD	TBD	639.05	9.28	629.77	Installed Nov. 2004	-2,70
P94R - Inside BW	TBD	TBD	640.99	13.92	627.07	Installed Nov. 2004	-2.70
P95 - Outside BW	5146	6532	638.58	8.01	630.57		-7,15
P96 - Insice BW	5156	6537	641.26	17.84	623.42		-7.15
P105 - Outside BW	5885	6678	638.86	4.81	634.05		-5.28
P106 - Inside BW	5871	6685	638.10	9.33	628.77		-3.20
P107 - Outside BW	5766	7339	637.42	4.63	632.79		-2.29
P108 - Inside BW	5757	7324	638.13	7.63	630.50		-2,29
P109 - Outside BW	5740	6387	644.30	10.34	633.96		-6.64
P110 - Inside BW	5705	6382	647.68	20.36	627.32		-0.04
P111 - Outside BW	5551	5950	650.03	16.60	633.43		-8.36
P112 - Inside BW	5525	5960	653.36	28.29	625.07		-8.30
P113 - Inside BW	5309	5693	657.53	30.49	627.04		5 97
ORCPZ102 - Outside BW	5331	5612	652.47	19.56	632.91		-5.87
P114 - Inside BW	5035	5729	653.69	26.16	627.53		-5.61
P115 - Outside BW	4970	5708	652.50	19.36	633.14		10.6-
P116 - Inside BW	5031	6087	646.26	18.54	627.72		-4.74
P117 - Outside BW	5014	6087	643.93	11.47	632.46		-4.14
P118 - Inside BW	5402	6539	645.52	19.04	626.48		n/a

Notes:

. Il depth measurements and elevations are in units of feet.

I levation is in feet above mean sea level.

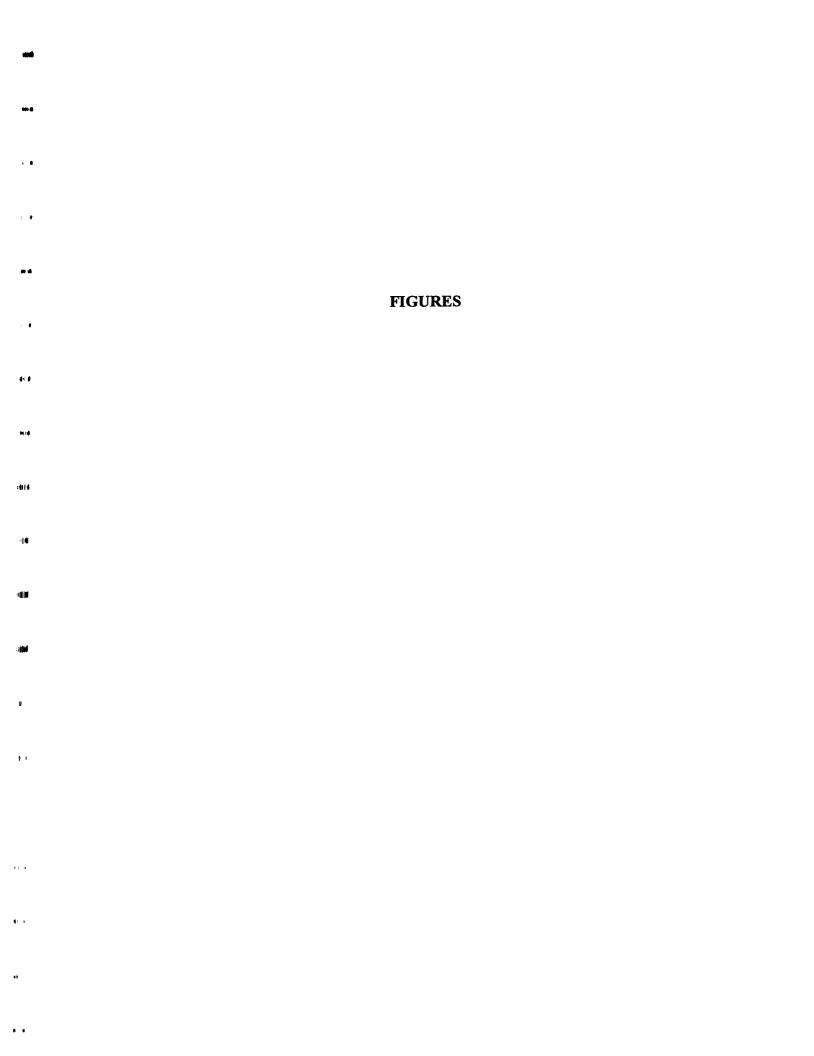
TOIC = top of inner casing

TOC = top of casing

TOSG = top of staff gauge

1/1 = not applicable

A positive value indicates that the water level is higher inside the barrier wall. A negative value indicates that the water level is lower inside the barrier wall.

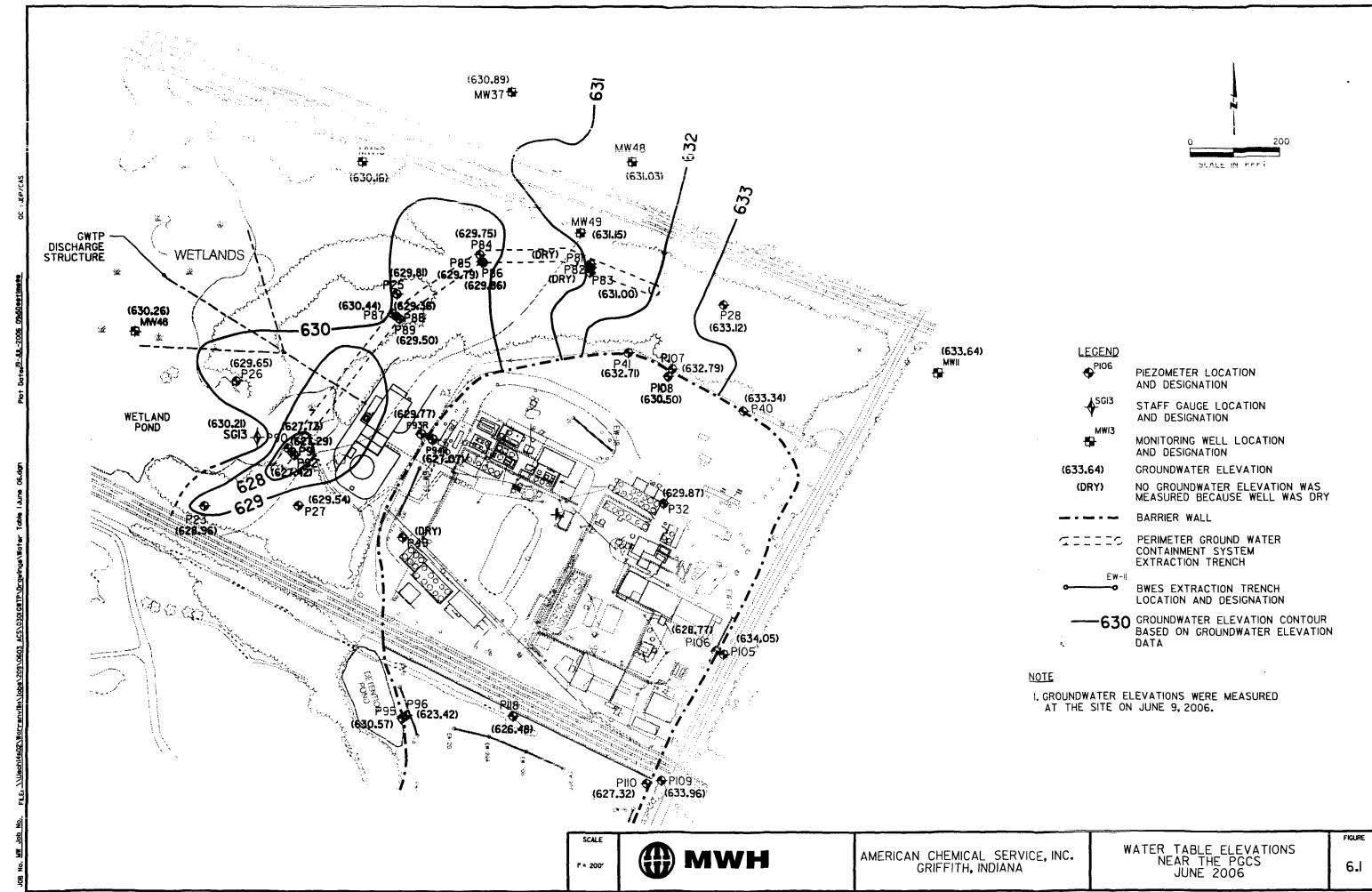
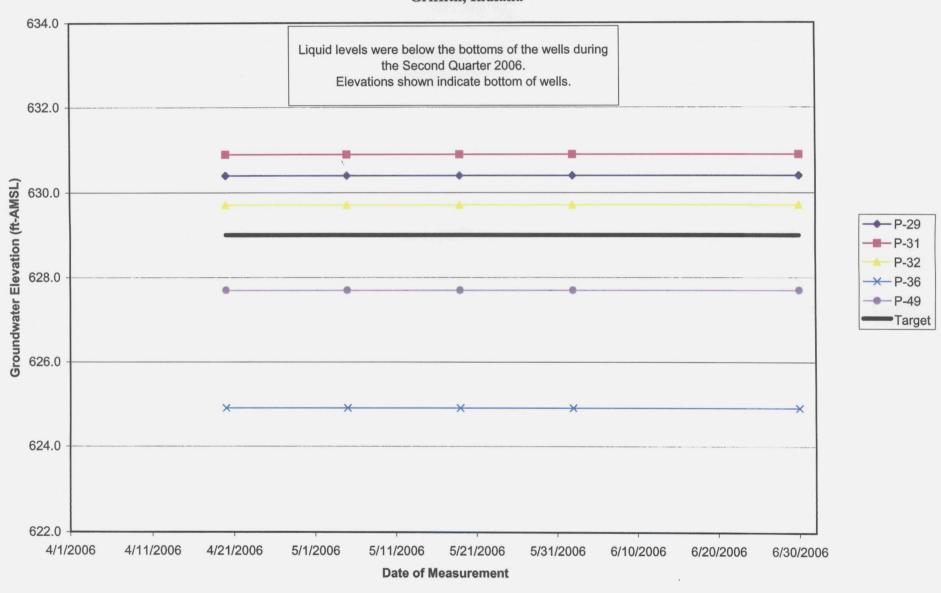

Table 6.2
Water Levels Inside Barrier Wall - Second Quarter 2006
American Chemical Service NPL Site
Griffith, Indiana

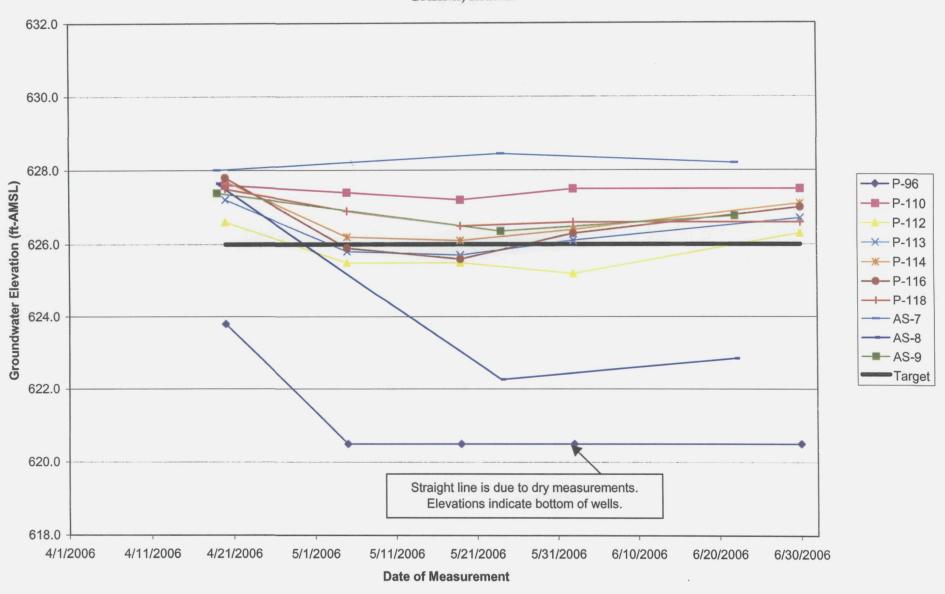
Date	On-Site Area							
	Target Level	P-29	P-31	P-32	P-36	P-49		
4/20/2006	629.0	630.4	630.9	629.7	624.9	627.7		
5/5/2006	629.0	630.4	630.9	629.7	624.9	627.7		
5/19/2006	629.0	630.4	630.9	629.7	624.9	627.7		
6/2/2006	629.0	630.4	630.9	629.7	624.9	627.7		
6/30/2006	629.0	630.4	630.9	629.7	624.9	627.7		

					Of	f-Site Area					
Date	Target Level	P-96	P-110	P-112	P-113	P-114	P-116	P-118	AS-7	AS-8	AS-9
4/19/2006	626.0	NM	NM	NM	NM	NM	NM	NM	628.00	627.64	627.38
4/20/2006	626.0	623.8	627.6	626.6	627.2	627.7	627.8	627.5	NM	NM	NM
5/5/2006	626.0	620.5	627.4	625.5	625.8	626.2	625.9	626.9	NM	NM	NM
5/19/2006	626.0	620.5	627.2	625.5	625.7	626.1	625.6	626.5	NM	NM	NM
5/24/2006	626.0	NM	NM	NM	NM	NM	NM	NM	628.44	622.26	626.35
6/2/2006	626.0	620.5	627.5	625.2	626.1	626.4	626.3	626.6	NM	NM	NM
6/22/2006	626.0	NM	NM	NM	NM	NM	NM	NM	628.19	622.84	626.76
6/30/2006	626.0	620.5	627.7	626.3	626.7	627.1	627.0	626.6	NM	NM	NM

Notes:

All water level elevations are in feet AMSL.


Figure 6.4
Water Level Trends Inside the Barrier Wall (Still Bottoms Pond Area)
ACS NPL Site
Griffith, Indiana

JEF/CAD

J:\209\0603 ACS\0301 GWTP\6030301a183.xls[SBPA GW Trends]

Figure 6.5
Water Level Trends Inside the Barrier Wall (Off-Site Area)
ACS NPL Site
Griffith, Indiana

JEF/CAD
J:\209\0603 ACS\0301 GWTP\6030301a183.xls[Off-Site GW Trends]

APPENDIX A EFFLUENT ANALYTICAL DATA

April 10, 2006 Compliance Sample Laboratory Results

			EFFLUENT
Lab Name:	COMPUCHEM	Method: 8260B	ł
			· ————————————————————————————————————

Lab Code: LIBRTY Case No.: SAS No.: SDG No.: 9541

Matrix: (soil/water) WATER Lab Sample ID: 954101

Sample wt/vol: 25 (g/ml) ML Lab File ID: 954101A61

_Level: (low/med) LOW Date Received: 04/11/06

% Moisture: not dec. Date Analyzed: 04/13/06

■GC Column: RTX-VMS ID: 0.18 (mm) Dilution Factor: 1.0

Soil Aliquot Volume: ____ {uL Soil Extract Volume: (uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

		
74-87-3Chloromethane	0.50	U
75-01-4Vinyl Chloride	0.50	
74-83-9Bromomethane	0.50	
75-00-3Chloroethane	4.3	
75-35-41,1-Dichloroethene	0.50	
75-15-0Carbon disulfide		U UJ
67-64-1Acetone	2.5	UUJ
75-09-2Methylene Chloride	1.7	
156-60-5trans-1,2-Dichloroethene	0.50	
75-34-31,1-Dichloroethane	0.50	
156-59-2cis-1,2-Dichloroethene	0.50	
78-93-32-butanone		LUU
67-66-3Chloroform	0.50	
71-55-61,1,1-Trichloroethane	0.50	
56-23-5Carbon Tetrachloride	0.50	
71-43-2Benzene	0.50	
107-06-21,2-Dichloroethane	0.50)
79-01-6Trichloroethene	0.50	1 -
78-87-51,2-Dichloropropane	0.50	
75-27-4Bromodichloromethane		
15-27-4Biomodichioromethane	0.50	
10061-01-5cis-1,3-Dichloropropene	0.50	U
108-10-14-Methyl-2-pentanone	2.5	1
108-88-3Toluene	0.50	
10061-02-6trans-1,3-Dichloropropene	0.50	1
79-00-51,1,2-Trichloroethane	0.50	
127-18-4Tetrachloroethene	0.50	
591-78-62-hexanone	2.5	UW
124-48-1Dibromochloromethane	0.50	ט
108-90-7Chlorobenzene	0.50	ט
100-41-4Ethylbenzene	0.50	
108-38-3m,p-Xylene	1.0	
95-47-6O-Xylene	0.50	
100-42-5Styrene	. 0.50	i -
]	
	l 	l

FORM I VOA

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

"Lab N	a tne: COMPUCHEM		Method: 8260B	EFF HOEN	
Lab C	cde: LIBRTY	Case No.:	SAS No.:	SDG No.: 9541	
Matri	: (soil/water)) WATER	Lab Sampl	e ID: 954101	
Sampl	€ wt./vol:	25 (g/ml) ML	Lab File	ID: 954101A61	
'Level	: (low/med)	LOW	Date Rece	ived: 04/11/06	
% Moi	sture: not dec.		Date Anal	yzed: 04/13/06	
GC Co	lumrı: RTX-VMS	ID: 0.18 (mm)	Dilution	Factor: 1.0	
Seil	Extract Volume:	(uL)	Soil Aliq	uot Volume:	(u
, v	CAS NO.	COMPOUND	CONCENTRATION UI (ug/L or ug/Kg)		
1 s)	75-25-2			0.50 U	-
1141	541-73-1 106-46-7 95-50-1	1,1,2,2-Tetracl 1,3-Dichlorober 1,4-Dichlorober 1,2-Dichlorober 1,2,4-Trichloro	nzenenzene	0.50 U 0.50 U 0.50 U 0.50 U 0.50 U UJ	-
n #	540-59-0	1,2-Dichloroeth Xylene (total)		0.50 U 0.50 U	

FORM I VOA

15/10/00

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

EFFLUENT

lı d	Lab Fame: COMPUCHEM	Method:	8270C	ZI I DOEM I
Įi d	Lab Code: LIBRTY	Case No.: SAS No.	: SDG	No.: 9541
,	Matrix: (soil/water)	WATER	Lab Sample ID:	954101
	Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	954101A64
u t	Level: (low/med)	LOW	Date Received:	04/11/06
	% Moisture:	decanted: (Y/N)	Date Extracted	:04/11/06
	Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	04/15/06
	Injection Volume:	1.0(uL)	Dilution Facto	r: 1.0
il I	GPC Cleanup: (Y/N)	N pH:		
i j iji i	CAS NO.		NTRATION UNITS: or ug/Kg) UG/L	Q
	1.06-44-5	Bis(2-chloroethyl)ether 4-Methylphenol Isophorone bis(2-ethylhexyl)Phthal		9.6 U 20 U 10 U 6.0 U

FORM I SV

|||| 4

8270C

/5/10 60

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

	Lab Na	me: CO	MPUCHEM	IPUCHEM			d: 8270C		Er	LTOENI
4 #	Lab Co	de: LI	BR T Y	Case N	0.:	SAS 1	10. :	SDG	No.:	9541
. ,	Matrix	: (soi	l/water)	WATER			Lab	Sample ID:	9541	.01
	Sample	wt/vo.	1:	1000	(g/mL) ML	1	Lab i	File ID:	9541	.01A60
4 1	Level:	(10	w/med)	LOW			Date	Received:	04/1	1/06
	% Moist	ture:		decan	ted: (Y/N)		Date	Extracted	1:04/1	1/06
4 1	Concent	trated	Extract	Volume	e: 1000	(uL)	Date	Analyzed:	04/2	1/06
	Injecti	ion Vol	lume:	1.0(1	ıL)		Dilut	tion Facto	r: 1.	0
4 1-1	GPC Cle	eanup:	(Y/N)	N	pH:					
j us		CAS NO).	COM	POUND			ION UNITS: g/Kg) UG/L		Q
	-	87-86-5Pentachlorophe				enol	1			ט

FORM I SV

8270C

12672-29-6-----Aroclor-1248 11097-69-1----Aroclor-1254 11096-82-5----Aroclor-1260

0.31 U 0.31 U 0.47 U

S ha d	Lab Name: COMPUCHEM	Contract	: 8082	EFFLUENT
	Lab Code: LIBRTY Case No	.: SAS No.	: SDG	No.: 9541
,	Matrix: (soil/water) WATER		Lab Sample ID:	954101
	Sample wt/vol: 1000	(g/mL) ML	Lab File ID:	
t 1	% Moisture: decant	ed: (Y/N)	Date Received:	04/11/06
	Extraction: (SepF/Cont/Son	c) SEPF	Date Extracted	1:04/12/06
	Concentrated Extract Volume	: 2500(uL)	Date Analyzed:	04/19/06
a ir	Injection Volume: 1.0(u	L)	Dilution Facto	r: 1.0
	GPC Cleanup: (Y/N) N	pH:	Sulfur Cleanup	: (Y/N) N
4 11	CAS NO. COMPO		NTRATION UNITS: or ug/Kg) UG/L	Q
l r	12674-11-2Aroc 11104-28-2Aroc 11141-16-5Aroc 53469-21-9Aroc	lor-1221 lor-1232		0.47 U 0.63 U 0.47 U 0.31 U

FORM I PEST

/5/16/06

SW846- METALS -1-

INORGANIC ANALYSES DATA SHEET

									E	A SAMPLE NO.
4										EFFLUENT
	Lao Nate:	COMPUCHE	MM	C	ontract:					
	Lab Code:	LIBRTY	_ Case N	o.:	SAS No.:			SDG No	:	9541
1	Matrix (soi	.1/water):	WATER		Lab :	Sample ID	:	95410	1	·
	Level (low/	med):	LOW		Date	Received	:	4/11/	2006	
1	% Solids:	0.0								
) 	o SOLICIS.	<u>0.0</u>	Concent	ration Units (uç	g/L or mg/kg	dry weigh	ht):		UG/L	- -
			CAS No.	Analyte	Concen	tration	С	Ω	М	
			7440-38-2	Arsenic	 -	20.6	†		P	
			7440-41-7		i	0.66	B	UB	<u> </u>	
			7440-43-9	Cadmium	1	0.20	U		P	
1			7439-97-6	Mercury		0.10	מן		cv	
			7439-96-5	Manganese		2.6	В	B	P	
			7782-49-2	Selenium	ı	3.3	U		P	
Įi			7440-28-0	Thallium		3.9	la l		P	
			7440-66-6	Zinc		0.30	U		P	
, if										
•	Colo: Bef	ore: COL	ORLESS	Clarity Before	: CLEAR		Te	cture:		
'	Colo: Af it	er: COL	ORLESS	Clarity After:	CLEAR		Art	ifacts	:	
t	Comments:			· · · · · · · · · · · · · · · · · · ·					12/	16/06

Phone: (919) 379-4100 Fax: (919) 379-4050

Cary, NC :27519-4603

ANALYTICAL RESULTS

oject:

9 541

Project ID: ACS 7010311

blid results are reported on a dry weight basis.

Lab ID:

Parameters

954101

Date Collected:

4/10/2006 14:00

Matrix:

Ву

Water

ample ID:

EFFLUENT

Date Received:

4/11/2006 10:26

Analyzed

CAS No.

Qual RegLmt

PH OF WATER 150.1

Analytical Method: EPA 150.1

Report Limit

PH-150 1

TSS

7.87 PH UNITS

Results Units

NA

DF Prepared

4/11/2006

Ву

2477

TI'L SSIPND (FOLIDS (TSS) 160.2 W

Analytical Method: EPA 160.2

0.900B mg/L

1.00

4/11/2006

2477

Date: 0 720/2006

5/16/05

Page 4 of 9

Environmental Conservation Laboratories, Inc.

102-A Moodwinds Industrial Court

Cary NC, 27511

919.467.3090 Phone

Classical Chemistry Parameters

Biochemical Oxygen Demand

FAX: 919.467.3515

www.encolabs.com

COMPUCHEM (CO035)

501 NIADISON AVENUE

CAR 'NC, 27513-

Project: ACS Project Number: [none]

Project Manager: DIANE BYRD

Reported:

24-Apr-06 13:04

ANALYTICAL RESULTS

Effluent

Laboratory Number:

C600852-01

Analyı:

Result

ND

Units

Dilution

Batch Prepared

Analyzed Ву

Method

mg/L

2

MRL

6D12013

04/12/06

04/12/06

ELJ

EPA 405.1

I-02, U

Notes

Notes and Definitions

U

Analyte included in the analysis, but not detected

This result was analyzed outside of the EPA recommended holding time.

Laboratory Certification Summary

Code	Description	Number	Expires
NC	NCDENR	591	12/31/2006

uck Suff

Chuck Smith, Project Manager

Page 1 of 1

May 4, 2006 Compliance Sample Laboratory Results

CLIENT SAMPLE NO.

EFFLUENT

**Lab Name: COMPUCHEM Method: 8260B

Lab Code: LIBRTY Case No.: SAS No.: SDG No.: 9718

'Mattrin: (soil/water) WATER Lab Sample ID: 971801

Sample wt/vol: 25 (g/ml) ML Lab File ID: 971801B61

'Level (low/med) LOW Date Received: 05/05/06

% Moisture: not dec. Date Analyzed: 05/09/06

GC Column: RTX-VMS ID: 0.18 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL

	CAS NO.	COMPOUND		RATION U r ug/Kg)		Q
101.6			·····			
	74-87-3	Chloromethane			0.50	בשט
	75-01-4	Vinyl Chloride	<u> </u>		0.50	
-काब	74-83-9	Bromomethane			0.50	עש דיי די
		Chloroethane			0.50	ע ע
	75-35-4	1,1-Dichloroet	hene		0.50	
	75-15-0	Carbon disulfi	.de		0.50	
-914	67-64-1	Acetone			2.5	UuJ
	75-09-2	Methylene Chlo	ride		0.50	
	156-60-5	trans-1,2-Dich	loroethene		0.50	ប
	75-34-3	1,1-Dichloroet	hane		0.50	
: 4 H	156-59-2	cis-1,2-Dichlo	roethene		0.50	
	78-93-3	2-butanone			2.5	τνυ
	67-66-3	Chloroform			0.50	U
	71-55-6	1,1,1-Trichlor	oethane		0.50	U
(10	56-23-5	Carbon Tetrach	loride		0.50	U
	71-43-2	Benzene			0.50	U
	107-06-2	1,2-Dichloroet	hane		0.50	U
194 18	79-01-6	Trichloroethen	e		0.50] ប
		1,2-Dichloropr			0.50	U
		Bromodichlorom			0.50	U
	10061-01-5-	cis-1,3-Dichlo	ropropene		0.50	
1	108-10-1	4-Methyl-2-pen	tanone		2.5	UVU
		Toluene			0.50	U
	10061-02-6-	trans-1,3-Dich	loropropene		0.50	ប
	79-00-5	1,1,2-Trichlore	oethane		0.50	ט
	127-18-4	Tetrachloroeth	ene	<u> </u>	0.50	บเป
	591-78-6	2-hexanone			2.5	עע
	124-48-1	Dibromochlorome	ethane		0.50	ָ ט
	108-90-7	Chlorobenzene			0.50	U
	100-41-4	Ethylbenzene			0.50	U
	108-38-3	m,p-Xylene			1.0	ט
	95-47-6	- V1			0.50	
a r		Styrene	· · · · · · · · · · · · · · · · · · ·		0.50	
				[ſ
		FORM I	VOA	·		

lundo olob

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

■ Lalo Name: COMPUCHEM	Method: 8260B	
Lab Code: LIBRTY Case No.:	SAS No.: SDG No.: 9718	
Matric: (soil/water) WATER	Lab Sample ID: 971801	
Sample wt/vol: 25 (g/ml) ML	Lab File ID: 971801B61	
Level (low/med) LOW	Date Received: 05/05/06	
% Moisture: not dec.	Date Analyzed: 05/09/06	
GC Column: RTX-VMS ID: 0.18 (mm)	Dilution Factor: 1.0	
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q	
75-25-2Bromoform 79-34-51,1,2,2-Tetrac 541-73-11,3-Dichlorobe 106-46-71,4-Dichlorobe 95-50-11,2-Dichlorobe 120-82-11,2,4-Trichlor 540-59-01,2-Dichloroet	enzene 0.50 U	

FORM I VOA

lunobolo b

Remit to: P.O. Box 4603 Cary, NC 27519-4603

Phone: (919) 379-4100 Fax: (919) 379-4050

ANALYTICAL RESULTS

oject:

9718

Project ID: ACS 7010311

Solid results are reported on a dry weight basis.

Ľab ID:

971801

Date Collected:

5/4/2006 12:00

Matrix:

Water

Sample ID:

EFFLUENT

Date Received:

5/5/2006 11:00

#urameters

PH-150.1

Results Units

Report Limit

DF Prepared

Ву Analyzed Ву

CAS No.

Qual RegLmt

OF WATER 150.1

Analytical Method: EPA 150.1 7.53 PH UNITS

J 0.00

5/10/2006

2477

lanobolo6

Date: 01/12/2006

Page 4 of 8

June 1, 2006 Compliance Sample Laboratory Results

CLIENT SAMPLE NO.

	Lak Name: COMPUCHEM		Method: 8260B	EFFLUEN	Т
• I	Lak Code: LIBRTY	Case No.:	SAS No.:	SDG No.: 9966	
	Matrix: (soil/water)	WATER	Lab Sample	e ID: 996601	
	Sample wt/vol:	25 (g/ml) ML	Lab File	ID: 996601A61	
	Level: (low/med)	FOM	Date Recei	ived: 06/02/06	
	<pre># Moisture: not dec.</pre>		Date Analy	zed: 06/05/06	
1	GC Tolumn: RTX-VMS	ID: 0.18 (mm)	Dilution F	Factor: 1.0	
	Soil Extract Volume:	(uL)	Soil Aliqu	ot Volume:	(uL
	CAS NO.	COMPOUND	CONCENTRATION UN (ug/L or ug/Kg)		
	75-01-4 74-83-9 75-00-3 75-35-4 75-15-0 67-64-1 75-09-2 156-60-5 75-34-3 156-59-2 78-93-3 71-55-6 71-55-6 71-43-2 107-06-2 79-01-6 79-01-6 108-10-1 108-88-3 108-88-3 10061-02-6 79-00-5 127-18-4 591-78-6 124-48-1 108-38-3 100-41-4 108-38-3 108-38-3 108-38-3 108-38-3	Methylene Chloritrans-1,2-Dichlorocis-1,2-Dichloro2-butanoneChloroform1,1,1-TrichloroeCarbon TetrachloroeBenzene1,2-DichloroethaeTrichloroethene1,2-DichloropropBromodichlorometcis-1,3-Dichloro4-Methyl-2-pentaToluenetrans-1,3-DichloroeTetrachloroethene2-hexanoneDibromochlorometChlorobenzeneEthylbenzenem,p-Xyleneo-Xylene	ene ide proethene pethene ethane pride ne ane hane propene none ropropene thane e	0.50 0.50	
,	108-38-3 95-47-6 100-42-5	o-Xylene			

FORM I VOA

M4062706

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET CLIENT SAMPLE NO.

EFFLUENT

Lab Name: COMPUCHEM

Method: 8260B

Lah Code: LIBRTY Case No.: SAS No.:

SDG No.: 9966

Matrix: (soil/water) WATER

Lab Sample ID: 996601

Sample wt/vol:

25 (g/ml) ML

Lab File ID:

996601A61

Level: (low/med) LOW

Date Received: 06/02/06

ኝ Moisture: not dec.

Date Analyzed: 06/05/06

GC Column: RTX-VMS ID: 0.18 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

FORM I VOA

hnob-706

Remit to: P.O. Box 4603 Cary, NC 27519-4603

Phone: (919) 379-4100 Fax: (919) 379-4050

ANALYTICAL RESULTS

Project: 9966

Project ID: ACS 7010311

Solid results are reported on a dry weight basis.

Lab ID: Sample 10: 996601

Date Collected: Date Received:

6/1/2006 00:00 6/2/2006 11:03 Matrix:

Water

Parameters

PH-150,1

EFFLUENT

Results Units

Ву Analyzed

CAS No.

Qual RegLmt

PH OF WATER 150.1

Analytical Method: EPA 150.1

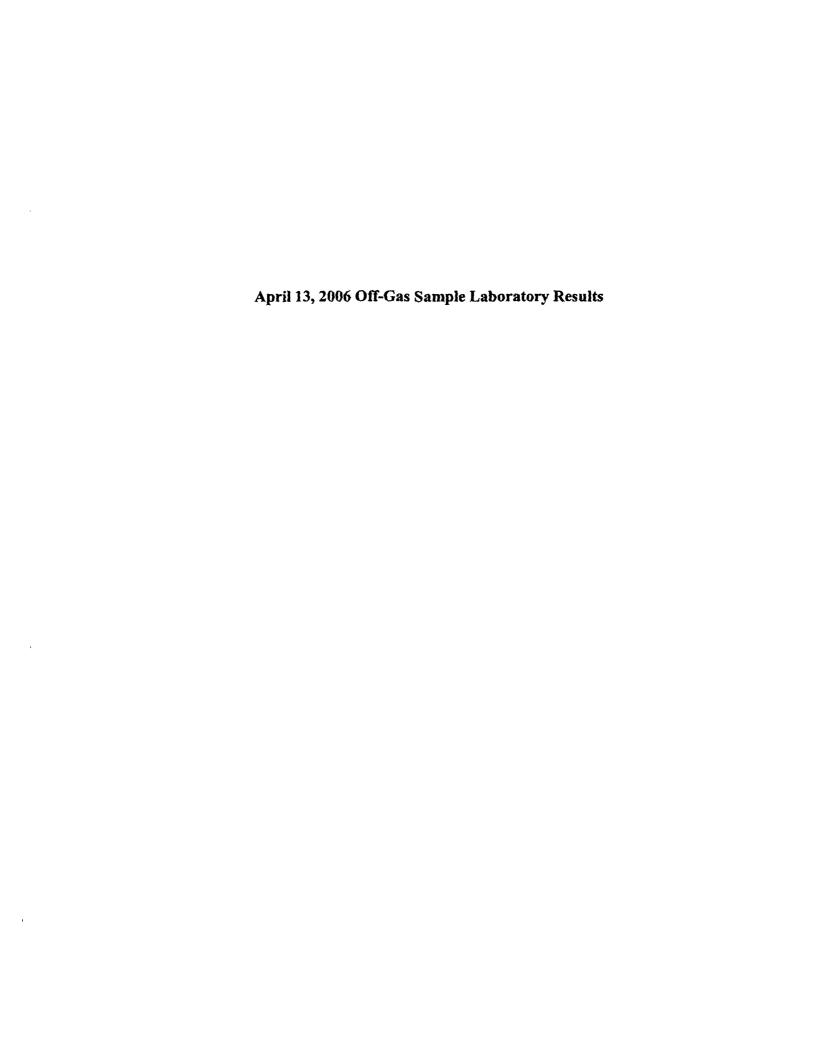
Report Limit

7.47 PH UNITS

DF Prepared

6/5/2006 00:00 2152

Date: 06/12/2006


hnopy . 6

Page 4 of 8

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of CompuChem a Division of Liberty Analytical Corp..

APPENDIX B THERMAL OXIDIZER OFF-GAS ANALYTICAL DATA

Client Sample ID: #1 OFFSITE ISVE

Lab ID#: 0604284A-01A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name:	5042010	1	Date of Gollection	<i>(-88) </i>
Diff. Factor: Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	4/20/06 08:24 PM Amount (uG/m3)
Vinyl Chloride	270	180 J /5	700	470 J
Bromomethane	270	Not Detected	1000	Not Detected
Chloroethane	270	Not Detected	720	Not Detected
1,1-Dichloroethene	270	91 J K	1100	360 J
Methylene Chloride	270	18000	940	62000
1.1-Dichloroethane	270	2400	1100	9800
cis-1,2-Dichloroethene	270	1800	1100	7200
Chloroform	270	1500	1300	7200
1.1.1-Trichloroethane	270	18000	1500	96000
Carbon Tetrachloride	270	Not Detected	1700	Not Detected
Benzene	270	11000	870	35000
1,2-Dichloroethane	270	660	1100	2700
Trichloroethene	270	12000	1500	67000
1,2-Dichloropropane	270	180 J K	1200	810 J
cis-1,3-Dichloropropene	270	Not Detected	1200	Not Detected
Toluene	270	72000	1000	270000
trans-1,3-Dichloropropene	270	Not Detected	1200	Not Detected
1.1.2-Trichloroethane	270	Not Detected	1500	Not Detected
Tetrachloroethene	270	19000	1800	130000
Chlorobenzene	270	Not Detected	1200	Not Detected
Ethyl Benzene	270	11000	1200	47000
n,p-Xylene	270	50000	1200	220000
o-Xylene	270	18000	1200	80000
Styrene	270	Not Detected	1200	Not Detected
1,1,2,2-Tetrachloroethane	270	Not Detected	1900	Not Detected
Bromodichloromethane	270	Not Detected	1800	Not Detected
Dibromochloromethane	270	Not Detected	2300	Not Detected
Chloromethane	1100	Not Detected	2200	Not Detected
cetone	1100	8300	2600	20000
Carbon Disulfide	1100	Not Detected	3400	Not Detected
rans-1,2-Dichloroethene	1100	Not Detected	4300	Not Detected
-Butanone (Methyl Ethyl Ketone)	1100	6100	3200	18000
-Methyl-2-pentanone	1100	4100	4400	17000
-Hexanone	1100	Not Detected	4400	Not Detected
Bromoform	1100	Not Detected	11000	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Surrogates %Recovery Limits

5/10/06

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #1 OFFSITE ISVE

Lab ID#: 0604284A-01A

Date of G	Hection: 4/43/06	
%Recovery	Method Limits	
99	70-130	
101	70-130	
97	70-130	
	99 101	

Client Sample ID: #2 SBPA ISVE

Lab ID#: 0604284A-02A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File flame: Oil: Factor	5042011 538	0	are of Collection late of Analysis:	4/13/06 4/20/06 06/48 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	270	730	680	1900
Bromomethane	270	Not Detected_	1000	Not Detected
Chloroethane	270	210 J /5	710	560 J
1.1-Dichloroethene	270	140 J /5	1100	560 J
Methylene Chloride	270	6200	930	21000
1.1-Dichloroethane	270	3000	1100	12000
cis-1,2-Dichloroethene	270	14000	1100	58000
Chloroform	270	5900	1300	29000
1.1.1-Trichloroethane	270	25000	1500	130000
Carbon Tetrachloride	270	Not Detected	1700	Not Detected
Benzene	270	6400	860	20000
1,2-Dichloroethane	270	340	1100	1400
Trichloroethene	270	20000	1400	110000
1,2-Dichloropropane	270	390	1200	1800
cis-1,3-Dichloropropene	270	Not Detected	1200	Not Detected
Toluene	270	59000	1000	220000
trans-1,3-Dichloropropene	270	Not Detected	1200	Not Detected
1,1,2-Trichloroethane	270	Not Detected	1500	Not Detected
Tetrachloroethene	270	39000	1800	260000
Chlorobenzene	270	93 J /T	1200	430 J
Ethyl Benzene	270	9100	1200	40000
m,p-Xylene	270	52000	1200	220000
o-Xylene	270	25000	1200	110000
Styrene	270	Not Detected	1100	Not Detected
1,1,2,2-Tetrachloroethane	270	Not Detected	1800	Not Detected
Bromodichloromethane	270	Not Detected	1800	Not Detected
Dibromochloromethane	270	Not Detected	2300	Not Detected
Chloromethane	1100	Not Detected	2200	Not Detected
Acetone	1100	840 J /5	2500	2000 J
Carbon Disulfide	1100	Not Detected	3300	Not Detected
rans-1,2-Dichloroethene	1100	270 J /3	4200	1100 J
2-Butanone (Methyl Ethyl Ketone)	1100	1300	3200	3900
I-Methyl-2-pentanone	1100	1100	4400	4500
2-Hexanone	1100	Not Detected	4400	Not Detected
Bromoform	1100	Not Detected	11000	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Surrogates %Recovery Limits

- OCS 5/10/06

Client Sample ID: #2 SBPA ISVE Lab ID#: 0604284A-02A

File Name 5042019 Dain of Collection: 473706 Dit Factor 536 Dain of Collection: 473706						
Surrogates	%Recovery	Method Limits				
1,2-Dichloroethane-d4	104	70-130				
Toluene-d8	100	70-130				
4-Bromofluorobenzene	96	70-130				

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #3 TOX 1 INF

Lab ID#: 0604284A-03A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chloride	170	710	440	1800
Bromomethane	170	Not Detected	680	Not Detected
Chloroethane	170	220	460	590
1,1-Dichloroethene	170	140 J /5	690	560 J
Methylene Chloride	170	6400	600	22000
1.1-Dichloroethane	170	3100	700	12000
cis-1,2-Dichloroethene	170	15000	690	61000
Chloroform	170	6400	850	31000
1,1,1-Trichloroethane	170	26000	950	140000
Carbon Tetrachloride	170	Not Detected	1100	Not Detected
Benzene	170	6300	560	20000
1,2-Dichloroethane	170	340	700	1400
Trichloroethene	170	20000	940	110000
1,2-Dichloropropane	170	360	800	1700
cis-1,3-Dichloropropene	170	Not Detected	790	Not Detected
Toluene	170	58000	660	220000
rans-1,3-Dichloropropene	170	Not Detected	790	Not Detected
1,1,2-Trichloroethane	170	Not Detected	950	Not Detected
Tetrachloroethene	170	40000	1200	270000
Chlorobenzene	170	95 J H	800	440 J
Ethyl Benzene	170	9600	760	42000
n,p-Xylene	170	55000	760	240000
-Xylene	170	27000	760	120000
Styrene	170	Not Detected	740	Not Detected
,1,2,2-Tetrachloroethane	170	Not Detected	1200	Not Detected
Bromodichloromethane	170	Not Detected	1200	Not Detected
Dibromochloromethane	170	Not Detected	1500	Not Detected
Chloromethane	700	Not Detected	1400	Not Detected
cetone	700	740	1600	1800
Carbon Disulfide	700	Not Detected	2200	Not Detected
rans-1,2-Dichloroethene	700	150 J /	2800	600 J
-Butanone (Methyl Ethyl Ketone)	700	1200	2000	3700
-Methyl-2-pentanone	700	1100	2800	4400
-Hexanone	700	Not Detected	2800	Not Detected
romoform	700	Not Detected	7200	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Surrogates %Recovery Limits

Client Sample ID: #3 TOX 1 INF

Lab ID#: 0604284A-03A

Fite Name: 504	2012 Date of Go	Nection: 4/13/06
Oil Factor Surrogates	948 Date of An %Recovery	Method Limits
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	97	70-130

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #4 TOX 1 INF DUP

Lab ID#: 0604284A-04A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

	5042013		an of Conectice	414-775
File Name Oil, Factor	348			4/20/08 07-58 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	170	810	440	2100
Bromomethane	170	Not Detected	680	Not Detected
Chloroethane	170	230	460	610
1.1-Dichloroethene	170	130 J 15	690	510 J
Methylene Chloride	170	6800	600	24000
1.1-Dichloroethane	170	3500	700	14000
cis-1,2-Dichloroethene	170	16000	690	64000
Chloroform	170	6600	850	32000
1,1,1-Trichloroethane	170	28000	950	150000
Carbon Tetrachloride	170	Not Detected	1100	Not Detected
Benzene	170	7000	560	22000
1,2-Dichloroethane	170	340	700	1400
Trichloroethene	170	23000	940	120000
1,2-Dichloropropane	170	420	800	2000
cis-1,3-Dichloropropene	170	Not Detected	790	Not Detected
Toluene	170	66000	660	250000
rans-1,3-Dichloropropene	170	Not Detected	790	Not Detected
1,1,2-Trichloroethane	170	Not Detected	950	Not Detected
Tetrachloroethene	170	43000	1200	290000
Chlorobenzene	170	100 J /5	800	460 J
Ethyl Benzene	170	11000	760	48000
n,p-Xylene	170	60000	760	260000
o-Xylene	170	29000	760	130000
Styrene	170	Not Detected	740	Not Detected
1,1,2,2-Tetrachloroethane	170	Not Detected	1200	Not Detected
3romodichloromethane	170	Not Detected	1200	Not Detected
Dibromochloromethane	170	Not Detected	1500	Not Detected
Chloromethane	700	Not Detected	1400	Not Detected
cetone	700	720	1600	1700
Carbon Disulfide	700	Not Detected	2200	Not Detected
rans-1,2-Dichloroethene	700	100 J /5	2800	420 J
2-Butanone (Methyl Ethyl Ketone)	700	1300	2000	3900
-Methyl-2-pentanone	700	1300	2800	5300
-Hexanone	700	Not Detected	2800	Not Detected
Bromoform	700	Not Detected	7200	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Surrogates %Recovery Limits

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #4 TOX 1 INF DUP

Lab ID#: 0604284A-04A

File Name 504	2043 Date of Co	itection: 4/43/06
Dil Factor Surrogates	148 Date of An	Method Limits
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	98	70-130

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #5 TOX 1 EFF Lab ID#: 0604284A-05A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name	5042014		Date of Collection	
Dill Factor:	1.36		Date of Analysis.	4/20/Q6.08:30 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.68	12	1.7	30
Bromomethane	0.68	Not Detected	2.6	Not Detected
Chloroethane	0.68	4.4	1.8	12
1.1-Dichloroethene	0.68	1,4	2.7	5.4
Methylene Chloride	0.68	4.1	2.4	14
1,1-Dichloroethane	0.68	4.8	2.8	19
cis-1,2-Dichloroethene	0.68	55	2.7	220
Chloroform	0.68	1.8	3.3	8.6
1,1,1-Trichloroethane	0.68	36	3.7	200
Carbon Tetrachloride	0.68	Not Detected	4.3	Not Detected
Benzene	0.68	14	2.2	45
1.2-Dichloroethane	0.68	Not Detected	2.8	Not Detected
Trichloroethene	0.68	42	3.6	230
1,2-Dichloropropane	0.68	0.30 J /5	3.1	1.4 J
cis-1,3-Dichloropropene	0.68	Not Detected	3.1	Not Detected
Toluene	0.68	75	2.6	280
trans-1,3-Dichloropropene	0.68	Not Detected	3.1	Not Detected
1,1,2-Trichloroethane	0.68	Not Detected	3.7	Not Detected
Tetrachloroethene	0.68	130	4.6	910
Chlorobenzene	0.68	0.26 J /T	3.1	1.2 J
Ethyl Benzene	0.68	17	3.0	74
m,p-Xylene	0.68	90	3.0	390
o-Xylene	0.68	30	3.0	130
Styrene	0.68	Not Detected	2.9	Not Detected
1,1,2,2-Tetrachloroethane	0.68	Not Detected	4.7	Not Detected
Bromodichloromethane	0.68	Not Detected	4.6	Not Detected
Dibromochloromethane	0.68	Not Detected	5.8	Not Detected
Chloromethane	2.7	4.3	5.6	8.9
Acetone	2.7	24	6.5	57
Carbon Disulfide	2.7	0.22 J /5	8.5	0.70 J
rans-1,2-Dichloroethene	2.7	1.5 J /5	11	6.0 J
2-Butanone (Methyl Ethyl Ketone)	2.7	5.8	8.0	17
I-Methyl-2-pentanone	2.7	2.1 J /5	11	8.8 J
2-Hexanone	2.7	0.58 J	11	2.4 J
Bromoform	2.7	Not Detected	28	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Surrogates %Recovery Limits

Client Sample ID: #5 TOX 1 EFF

Lab ID#: 0604284A-05A MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name 5.04	2014 Date of Co	Hection: 4/13/06
Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: #5 TOX 1 EFF Duplicate

Lab ID#: 0604284A-05AA

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name:	5042015	ŧ	ate of Collection	4/13/06
GIL Facilitie	0.00		ajaksi Asial Valso	4/20/06/09:62 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.68	11	1.7	29
Bromomethane	0.68	Not Detected	2.6	Not Detected
Chloroethane	0.68	3.9	1.8	10
1,1-Dichloroethene	0.68	1.5	2.7	5.9
Methylene Chloride	0.68	3.8	2.4	13
1,1-Dichloroethane	0.68	4.4	2.8	18
cis-1,2-Dichloroethene	0.68	55	2.7	220
Chloroform	0.68	1.6	3.3	7.8
1,1,1-Trichloroethane	0.68	35	3.7	190
Carbon Tetrachloride	0.68	Not Detected	4.3	Not Detected
Benzene	0.68	14	2.2	45
1,2-Dichloroethane	0.68	Not Detected	2.8	Not Detected
Trichloroethene	0.68	43	3.6	230
1,2-Dichloropropane	0.68	0.22 J /5	3.1	1.0 J
cis-1,3-Dichloropropene	0.68	Not Detected	3.1	Not Detected
Toluene	0.68	75	2.6	280
rans-1,3-Dichloropropene	0.68	Not Detected	3.1	Not Detected
1,1,2-Trichloroethane	0.68	Not Detected	3.7	Not Detected
Tetrachloroethene	0.68	130	4.6	880
Chlorobenzene	0.68	0.28 J /T	3.1	1.3 J
Ethyl Benzene	0.68	17	3.0	76
n,p-Xylene	0.68	90	3.0	390
o-Xylene	0.68	30	3.0	130
Styrene	0.68	Not Detected	2.9	Not Detected
,1,2,2-Tetrachloroethane	0.68	Not Detected	4.7	Not Detected
Bromodichloromethane	0.68	Not Detected	4.6	Not Detected
Dibromochloromethane	0.68	Not Detected	5.8	Not Detected
Chloromethane	2.7	4.2	5.6	8.6
Acetone	2.7	24	6.5	57
Carbon Disulfide	2.7	0.21 J /5	8.5	0.66 J
rans-1,2-Dichloroethene	2.7	2.2 1/5	11	8.6 J
-Butanone (Methyl Ethyl Ketone)	2.7	5.5	8.0	16
-Methyl-2-pentanone	2.7	2.2 1 /5	11	9.2 J
-Hexanone	2.7	0.77 J K	11	3.1 J
Bromoform	2.7	Not Detected	28	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Surrogates %Recovery Limits

Client Sample ID: #5 TOX 1 EFF Duplicate

Lab ID#: 0604284A-05AA

Surrogates	%Recovery	Method Limits
,2-Dichloroethane-d4	99	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: #6 TOX 2 INF Lab ID#: 0604284A-06A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name:	5042016	************	Date of Collection Date of Analysis	
Oil. Factor	Dat Limit	Amount	Rpt. Limit	Amount
Compound	Rpt. Limit (ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chloride	230	790	590	2000
Bromomethane	230	Not Detected	900	Not Detected
Chloroethane	230	520	610	1400
1.1-Dichloroethene	230	Not Detected	920	Not Detected
Methylene Chloride	230	13000	800	46000
1,1-Dichloroethane	230	2200	940	8800
cis-1,2-Dichloroethene	230	5800	920	23000
Chloroform	230	1200	1100	5700
1.1.1-Trichloroethane	230	15000	1300	81000
Carbon Tetrachloride	230	Not Detected	1400	Not Detected
Benzene	230	9000	740	29000
1.2-Dichloroethane	230	480	940	2000
Trichloroethene	230	9900	1200	53000
1,2-Dichloropropane	230	220 J H	1100	1000 J
cis-1,3-Dichloropropene	230	Not Detected	1000	Not Detected
Toluene	230	54000	870	200000
trans-1,3-Dichloropropene	230	Not Detected	1000	Not Detected
1.1.2-Trichloroethane	230	Not Detected	1300	Not Detected
Tetrachloroethene	230	16000	1600	100000
Chlorobenzene	230	86 J /5	1100	400 J
Ethyl Benzene	230	7600	1000	33000
n,p-Xylene	230	35000	1000	150000
o-Xylene	230	13000	1000	55000
Styrene	230	Not Detected	990	Not Detected
1,1,2,2-Tetrachloroethane	230	Not Detected	1600	Not Detected
Bromodichloromethane	230	Not Detected	1600	Not Detected
Dibromochloromethane	230	Not Detected	2000	Not Detected
Chloromethane	930	Not Detected	1900	Not Detected
Acetone	930	5600	2200	13000
Carbon Disulfide	930	Not Detected	2900	Not Detected
rans-1,2-Dichloroethene	930	200 J /5	3700	790 J
2-Butanone (Methyl Ethyl Ketone)	930	5100	2700	15000
-Methyl-2-pentanone	930	2800	3800	12000
2-Hexanone	930	Not Detected	3800	Not Detected
Bromoform	930	Not Detected	9600	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Surrogates %Recovery Limits

Client Sample ID: #6 TOX 2 INF Lab ID#: 0604284A-06A

Fils Name: 50	#2018 Date of Co	Hection: 4/13/06
Dif. Factor: Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	107	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	94	70-130

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #7 TOX 2 INF DUP

Lab ID#: 0604284A-07A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name DIF Fectors	5042017 463		late of Collection late of Analysis:	-4/13/06 4/20/06/09/51 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chloride	230	410	590	1000
Bromomethane	230	Not Detected	900	Not Detected
Chloroethane	230	390	610	1000
1,1-Dichloroethene	230	Not Detected	920	Not Detected
Methylene Chloride	230	13000	800	46000
1,1-Dichloroethane	230	2100	940	8400
cis-1,2-Dichloroethene	230	4800	920	19000
Chloroform	230	1100	1100	5300
1,1,1-Trichloroethane	230	14000	1300	77000
Carbon Tetrachloride	230	Not Detected	1400	Not Detected
Benzene	230	9300	740	30000
1,2-Dichloroethane	230	490	940	2000
Trichloroethene	230	9900	1200	53000
1,2-Dichloropropane	230	160 J /5	1100	750 J
cis-1,3-Dichloropropene	230	Not Detected	1000	Not Detected
Toluene	230	54000	870	200000
trans-1,3-Dichloropropene	230	Not Detected	1000	Not Detected
1,1,2-Trichloroethane	230	Not Detected	1300	Not Detected
Tetrachloroethene	230	15000	1600	100000
Chlorobenzene	230	721/5	1100	330 J
Ethyl Benzene	230	7700	1000	33000
m,p-Xylene	230	36000	1000	150000
o-Xylene	230	13000	1000	56000
Styrene	230	Not Detected	990	Not Detected
1,1,2,2-Tetrachloroethane	230	Not Detected	1600	Not Detected
Bromodichloromethane	230	Not Detected	1600	Not Detected
Dibromochloromethane	230	Not Detected	2000	Not Detected
Chloromethane	930	Not Detected	1900	Not Detected
Acetone	930	5400	2200	13000
Carbon Disulfide	930	Not Detected	2900	Not Detected
rans-1,2-Dichloroethene	930	260 J /5	3700	1000 J
2-Butanone (Methyl Ethyl Ketone)	930	4600	2700	13000
I-Methyl-2-pentanone	930	2900	3800	12000
2-Hexanone	930	Not Detected	3800	Not Detected
Bromoform	930	Not Detected	9600	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Surrogates %Recovery Limits

5/10/06

Client Sample ID: #7 TOX 2 INF DUP Lab ID#: 0604284A-07A

File Name: 5042017 Date of Collection: 473206: Dit Factor 463 Date of Arralysis: 472006 19:51 Pk				
Surrogates	%Recovery	Method Limits		
1,2-Dichloroethane-d4	104	70-130		
Toluene-d8	102	70-130		
4-Bromofluorobenzene	100	70-130		

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #8 TOX 2 EFF Lab ID#: 0604284A-08A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Namer BIE Factor	5042018 11.1		Date of Collection: Jate of Analysis:	4/3/06 4/20/06 10:16 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	5.6	51	14	130
Bromomethane	5.6	Not Detected	22	Not Detected
Chloroethane	5.6	14	15	37
1.1-Dichloroethene	5.6	130	22	520
Methylene Chloride	5.6	500	19	1800
1,1-Dichloroethane	5.6	71	22	290
cis-1,2-Dichloroethene	5.6	220	22	870
Chloroform	5.6	43	27	210
1,1,1-Trichloroethane	5.6	500	30	2700
Carbon Tetrachloride	5.6	2.91/5	35	18 J
Benzene	5.6	470	18	1500
1,2-Dichloroethane	5.6	18	22	72
Trichloroethene	5.6	370	30	2000
1,2-Dichloropropane	5.6	4.71 /5	26	22 J
cis-1,3-Dichloropropene	5.6	Not Detected	25	Not Detected
Toluene	5.6	1400	21	5500
trans-1,3-Dichloropropene	5.6	Not Detected	25	Not Detected
1,1,2-Trichloroethane	5.6	Not Detected	30	Not Detected
Tetrachloroethene	5.6	640	38	4400
Chlorobenzene	5.6	5.4 J	26	25 J
Ethyl Benzene	5.6	160	24	690
m,p-Xylene	5.6	640	24	2800
o-Xylene	5.6	240	24	1000
Styrene	5.6	41	24	170
1,1,2,2-Tetrachloroethane	5.6	Not Detected	38	Not Detected
Bromodichloromethane	5.6	Not Detected	37	Not Detected
Dibromochloromethane	5.6	Not Detected	47	Not Detected
Chloromethane	22	9.8 J /3	46	20 J
Acetone	22	350	53	820
Carbon Disulfide	22	13 J /5	69	40 J
rans-1,2-Dichloroethene	22	26	88	100
2-Butanone (Methyl Ethyl Ketone)	22	140	65	420
I-Methyl-2-pentanone	22	49	91	200
2-Hexanone	22	3.91 /5	91	16 J
Bromoform	22	Not Detected	230	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Method Surrogates %Recovery Limits

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #8 TOX 2 EFF

Lab ID#: 0604284A-08A

File Name 50	2018 Date of Co	E Date of Collections 4/12/96		
Dil Fautor Surrogates	11.1 Date of An %Recovery	alvels: #20/06 10:16 PM Method Limits		
1,2-Dichloroethane-d4	106	70-130		
Toluene-d8	98	70-130		
4-Bromofluorobenzene	97	70-130		

Client Sample ID: Lab Blank Lab ID#: 0604284A-09A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

Fite Name: DIL Factor	5042008a 4.00		Date of Collections Date of Analysis	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
Bromomethane	0.50	Not Detected	1.9	Not Detected
Chloroethane	0.50	Not Detected	1.3	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Methylene Chloride	0.50	Not Detected	1.7	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	0.17 J	2.3	0.76 J
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
Chloromethane	2.0	Not Detected	4.1	Not Detected
Acetone	2.0	Not Detected	4.8	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
rans-1,2-Dichloroethene	2.0	Not Detected	7.9	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
-Methyl-2-pentanone	2.0	Not Detected	8.2	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Bromoform	2.0	Not Detected	21	Not Detected

J = Estimated value.

Container Type: NA - Not Applicable

Surrogates %Recovery Limits

Client Sample ID: Lab Blank Lab ID#: 0604284A-09A

File Name: 5042	008a Date of Co	Date of Collection NA		
DB Factor: Surrogates	1.00 Date of An	alysis 4/20/06 02/15 PW Method Limits		
1,2-Dichloroethane-d4	101	70-130		
Toluene-d8	100	70-130		
4-Bromofluorobenzene	99	70-130		

Client Sample ID: CCV Lab ID#: 0604284A-10A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name CNL Factor	5042003 1.00	Date of Collection: NA: Date of Analysis: 4/20/06/11/24/AM:
Compound	A 25 30 10 10 10 10 10 10 10 10 10 10 10 10 10	%Recovery
Vinyl Chloride		114
Bromomethane		121
Chloroethane		106
1,1-Dichloroethene		106
Methylene Chloride		110
1,1-Dichloroethane		107
cis-1,2-Dichloroethene		105
Chloroform		99
1,1,1-Trichloroethane		101
Carbon Tetrachloride		108
Benzene		96
1,2-Dichloroethane		113
Trichloroethene		107
1,2-Dichloropropane		104
cis-1,3-Dichloropropene	and state the state in the	100
Toluene		104
trans-1,3-Dichloropropene		108
1,1,2-Trichloroethane		108
Tetrachloroethene		108
Chlorobenzene		105
Ethyl Benzene		104
m,p-Xylene		109
o-Xylene		107
Styrene		108
1,1,2,2-Tetrachloroethane		103
Bromodichloromethane		104
Dibromochloromethane		109
Chloromethane		118
Acetone		100
Carbon Disulfide		103
rans-1,2-Dichloroethene		99
2-Butanone (Methyl Ethyl Ketone)		100
I-Methyl-2-pentanone		107
2-Hexanone		102
Bromoform		110

Container Type: NA - Not Applicable

Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	102	70-130

Page 31 of 36

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: CCV Lab ID#: 0604284A-10A

File Name 50- Dit Factor	12003 Dam of Col 1.00 Date of An	lection: NA alvala: 4/20/06/11/24/AM
Surrogates	%Recovery	Method Limits
Toluene-d8	103	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: LCS Lab ID#: 0604284A-11A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name:	5042004	Date	of Collection: NA
Dil: Factor:	1.00	Date	i) Analysis: 4/20/06 14 48 AM

Compound	%Recovery
Vinyl Chloride	109
Bromomethane	122
Chloroethane	111
1,1-Dichloroethene	106
Methylene Chloride	108
1,1-Dichloroethane	107
cis-1,2-Dichloroethene	105
Chloroform	98
1,1,1-Trichloroethane	103
Carbon Tetrachloride	108
Benzene	96
1,2-Dichloroethane	113
Trichloroethene	107
1,2-Dichloropropane	104
cis-1,3-Dichloropropene	89
Toluene	105
trans-1,3-Dichloropropene	102
1,1,2-Trichloroethane	109
Tetrachloroethene	110
Chlorobenzene	108
Ethyl Benzene	113
m,p-Xylene	109
o-Xylene	98
Styrene	104
1,1,2,2-Tetrachloroethane	107
Bromodichloromethane	102
Dibromochloromethane	104
Chloromethane	114
Acetone	107
Carbon Disulfide	111
rans-1,2-Dichloroethene	104
2-Butanone (Methyl Ethyl Ketone)	104
-Methyl-2-pentanone	109
-Hexanone	105
Bromoform	92

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	103	70-130

Client Sample ID: LCS Lab ID#: 0604284A-11A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Harner 5 Ulk Factors	042004 Date of Co 1:00 Date of An	Hection: NA alvsis: 4/20/06/11/48.AM
Surrogates	%Recovery	Method Limits
Toluene-d8	103	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: LCSD Lab ID#: 0604284A-11AA

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name 5942006 Dil Factori 1.80	Date of Collection: NA: Date of Analysis: 420/06 12:48 PM:
Compound	%Recovery
Vinyl Chloride	116
Bromomethane	124
Chloroethane	111
1,1-Dichloroethene	111
Methylene Chloride	112
1,1-Dichloroethane	108
cis-1,2-Dichloroethene	109
Chloroform	104
1,1,1-Trichloroethane	106
Carbon Tetrachloride	111
Benzene	97
1,2-Dichloroethane	113
Trichloroethene	108
1,2-Dichloropropane	103
cis-1,3-Dichloropropene	88
Toluene	103
rans-1,3-Dichloropropene	104
1,1,2-Trichloroethane	107
Tetrachloroethene	110
Chlorobenzene	106
Ethyl Benzene	109
n,p-Xylene	109
o-Xylene	97
Styrene	103
,1,2,2-Tetrachloroethane	107
Bromodichloromethane	101
Dibromochloromethane	104
Chloromethane	118
Acetone	112
Carbon Disulfide	117
rans-1,2-Dichloroethene	111
-Butanone (Methyl Ethyl Ketone)	115
-Methyl-2-pentanone	110
-Hexanone	102
romoform	91

Container Type: NA - Not Applicable

Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	108	70-130

70-130 (1C) -(10)

Page 35 of 36

Client Sample ID: LCSD Lab ID#: 0604284A-11AA

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

Fite Name: 50/	12008: Date of Co 1 00 Date of An	liection: NA alysis: 4720/06/12/48 PM
Surrogates	%Recovery	Method Limits
Toluene-d8	102	70-130
4-Bromofluorobenzene	99	70-130

AIR TOXICS LTD.

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #1 OFFSITE ISVE

Lab ID#: 0604284B-01A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

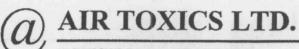
Fite Name: p0425 Dff: Factor: 1	00 Daie of	Collection: 4/13/06 Analysis: 4/25/06 02:02 PM
	Rpt. Limit	Extraction: 4/18/06 Amount
Compound	(ug)	(ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	3.6
2-Chlorophenol	5.0	Not Detected
1,3-Dichlorobenzene	1.0	1.0
1,4-Dichlorobenzene	1.0	3.6
1,2-Dichlorobenzene	1.0	32
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
sophorone	1.0	18
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
pis(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
,2,4-Trichlorobenzene	1.0	0.87 J /
Vaphthalene	1.0	35
-Chloroaniline	10	Not Detected
Hexachlorobutadiene	1.0	2.5
-Chloro-3-methylphenol	5.0	Not Detected
-Methylnaphthalene	1.0	7.3
lexachlorocyclopentadiene	20	1.5 J / <
,4,6-Trichlorophenol	5.0	Not Detected
,4,5-Trichlorophenol	5.0	Not Detected
-Chloronaphthalene	1.0	Not Detected
-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
cenaphthylene	1.0	Not Detected
,6-Dinitrotoluene	5.0	Not Detected
-Nitroaniline	10	Not Detected
cenaphthene	1.0	Not Detected
4-Dinitrophenol	20	Not Detected
Nitrophenol	20	Not Detected
4-Dinitrotoluene	5.0	Not Detected
ibenzofuran	1.0	Not Detected
iethylphthalate	5.0	0.87 J /5
luorene	1.0	Not Detected
-Chlorophenyl-phenyl Ether	1.0	Not Detected

Page 7 of 28

Client Sample ID: #1 OFFSITE ISVE Lab ID#: 0604284B-01A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Name p0425 DR Factor 1		Collection: 4/13/06 Analysis: 4/25/06/02:92 PM:
		Extraction: 4/18/06
income very different and and	Rpt. Limit	Amount
Compound	(ug)	(ug)
4-Nitroaniline	10	Not Detected
4,6-Dinitro-2-methylphenol	10	Not Detected
N-Nitrosodiphenylamine	10	Not Detected
4-Bromophenyl-phenyl Ether	1.0	Not Detected
Hexachlorobenzene	1.0	Not Detected
Pentachlorophenol	20	Not Detected
Phenanthrene	1.0	Not Detected
Anthracene	1.0	Not Detected
di-n-Butylphthalate	5.0	Not Detected
Fluoranthene	1.0	Not Detected
Pyrene	1.0	Not Detected
Butylbenzylphthalate	5.0	Not Detected
3,3'-Dichlorobenzidine	20	Not Detected
Chrysene	1.0	Not Detected
Benzo(a)anthracene	1.0	Not Detected
ois(2-Ethylhexyl)phthalate	5.0	4.3 J
Di-n-Octylphthalate	5.0	Not Detected
Benzo(b)fluoranthene	1.0	Not Detected
Benzo(k)fluoranthene	1.0	Not Detected
Benzo(a)pyrene	1.0	Not Detected
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected
Dibenz(a,h)anthracene	1.0	Not Detected
Benzo(g,h,i)perylene	1.0	Not Detected
= Estimated value.		
Container Type: XAD Tube		Method
Gurrogates	%Recovery	Limits
-Fluorophenol	57	50-150
Phenol-d5	84	50-150
litrobenzene-d5	80	50-150
,4,6-Tribromophenol	78	50-150
luorene-d10	74	60-120



Client Sample ID: #2 SBPA ISVE Lab ID#: 0604284B-02A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

Dil Factor: 1.0		Analysis: 4/25/06 02/32 PM
	Date of	Extraction: 4:18/06
Compound	Rpt. Limit (ug)	Amount (ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	1.2
2-Chlorophenol	5.0	Not Detected
1,3-Dichlorobenzene	1.0	2.1
1,4-Dichlorobenzene	1.0	5.5
1,2-Dichlorobenzene	1.0	24
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
sophorone	1.0	2.3
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
ois(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
1,2,4-Trichlorobenzene	1.0	Not Detected
Naphthalene	1.0	9.3
I-Chloroaniline	10	Not Detected
Hexachlorobutadiene	1.0	2.9
I-Chloro-3-methylphenol	5.0	Not Detected
2-Methylnaphthalene	1.0	6.4
lexachlorocyclopentadiene	20	Not Detected
2,4,6-Trichlorophenol	5.0	Not Detected
2,4,5-Trichlorophenol	5.0	Not Detected
-Chloronaphthalene	1.0	Not Detected
-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
cenaphthylene	1.0	Not Detected
,6-Dinitrotoluene	5.0	Not Detected
-Nitroaniline	10	Not Detected
cenaphthene	1.0	Not Detected
,4-Dinitrophenol	20	Not Detected
Nitrophenol	20	Not Detected
,4-Dinitrotoluene	5.0	Not Detected
ibenzofuran	1.0	Not Detected
iethylphthalate	5.0	0.63 J /S
luorene	1.0	Not Detected
-Chlorophenyl-phenyl Ether	1.0	Not Detected

Page 9 of 28

Client Sample ID: #2 SBPA ISVE Lab ID#: 0604284B-02A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Name: p042510	Date of	Collection: 4/13/06
Dif. Factor: 1 00		Analysis: 4/25/06/02:32 PM
	Rpt. Limit	Amount
Compound	(ug)	(ug)
4-Nitroaniline	10	Not Detected
4,6-Dinitro-2-methylphenol	10	Not Detected
N-Nitrosodiphenylamine	10	Not Detected
4-Bromophenyl-phenyl Ether	1.0	Not Detected
Hexachlorobenzene	1.0	Not Detected
Pentachlorophenol	20	Not Detected
Phenanthrene	1.0	Not Detected
Anthracene	1.0	Not Detected
di-n-Butylphthalate	5.0	Not Detected
Fluoranthene	1.0	Not Detected
Pyrene	1.0	Not Detected
Butylbenzylphthalate	5.0	Not Detected
3,3'-Dichlorobenzidine	20	Not Detected
Chrysene	1.0	Not Detected
Benzo(a)anthracene	1.0	Not Detected
pis(2-Ethylhexyl)phthalate	5.0	1.7 J
Di-n-Octylphthalate	5.0	Not Detected
Benzo(b)fluoranthene	1.0	Not Detected
Benzo(k)fluoranthene	1.0	Not Detected
Benzo(a)pyrene	1.0	Not Detected
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected
Dibenz(a,h)anthracene	1.0	Not Detected
Benzo(g,h,i)perylene	1.0	Not Detected
J = Estimated value.		
Container Type: XAD Tube		Method
Surrogates	%Recovery	Limits
-Fluorophenol	50	50-150
PhenoI-d5	75	50-150
litrobenzene-d5	76	50-150
,4,6-Tribromophenol	72	50-150
luorene-d10	74	60-120
Pyrene-d10	78	60-120

Client Sample ID: #3 TOX 1 INF Lab ID#: 0604284B-03A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Name:	p042514	Date of Collection, 4/13/06
Dil. Factor	± 00	Date of Analysis: 4/25/06 04:32 PM
		Date of Extraction: 4/18/06
	Rpt. Limit	Amount
Compound	(ug)	(ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	1.8
2-Chlorophenol	5.0	Not Detected
1,3-Dichlorobenzene	1.0	3.5
1,4-Dichlorobenzene	1.0	9.4
1,2-Dichlorobenzene	1.0	40
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
Isophorone	1.0	3.7
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
bis(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
1,2,4-Trichlorobenzene	1.0	Not Detected
Naphthalene	1.0	20
4-Chloroaniline	10	Not Detected
Hexachlorobutadiene	1.0	5.6
4-Chloro-3-methylphenol	5.0	Not Detected
2-Methylnaphthalene	1.0	15
Hexachlorocyclopentadiene	20	Not Detected
2,4,6-Trichlorophenol	5.0	Not Detected
2,4,5-Trichlorophenol	5.0	Not Detected
2-Chloronaphthalene	1.0	Not Detected
2-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
Acenaphthylene	1.0	Not Detected
2,6-Dinitrotoluene	5.0	Not Detected
3-Nitroaniline	10	Not Detected
Acenaphthene	1.0	Not Detected
2,4-Dinitrophenol	20	Not Detected
4-Nitrophenol	20	Not Detected
2,4-Dinitrotoluene	5.0	Not Detected
Dibenzofuran	1.0	Not Detected
Diethylphthalate	5.0	Not Detected
Fluorene	1.0	Not Detected
4-Chlorophenyl-phenyl Ether	1.0	Not Detected (

Page 11 of 28

Client Sample ID: #3 TOX 1 INF Lab ID#: 0604284B-03A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Name p042514 Date of C		
Dit Factor: 1.0	PATEKKU KARACIA (KARACIA) MAKAKA KARACIA PATEKA KARACIA PATEKA PATEKA PATEKA PATEKA PATEKA PATEKA PATEKA PATEK	Collection: 4/13/06 Analysis: 4/25/06/04/12 PM
		straction: 4/18/06
Compound	Rpt. Limit (ug)	Amount (ug)
4-Nitroaniline	10	Not Detected
4,6-Dinitro-2-methylphenol	10	Not Detected
N-Nitrosodiphenylamine	10	Not Detected
4-Bromophenyl-phenyl Ether	1.0	Not Detected
Hexachlorobenzene	1.0	Not Detected
Pentachlorophenol	20	Not Detected
Phenanthrene	1.0	Not Detected
Anthracene	1.0	Not Detected
di-n-Butylphthalate	5.0	Not Detected
Fluoranthene	1.0	Not Detected
Pyrene	1.0	Not Detected
Butylbenzylphthalate	5.0	1.1 J /
3,3'-Dichlorobenzidine	20	Not Detected
Chrysene	1.0	Not Detected
Benzo(a)anthracene	1.0	Not Detected
ois(2-Ethylhexyl)phthalate	5.0	1.6 3 /
Di-n-Octylphthalate	5.0	Not Detected
Benzo(b)fluoranthene	1.0	Not Detected
Benzo(k)fluoranthene	1.0	Not Detected
Benzo(a)pyrene	1.0	Not Detected
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected
Dibenz(a,h)anthracene	1.0	Not Detected
Benzo(g,h,i)perylene	1.0	Not Detected
J = Estimated value. Q = Exceeds Quality Control limits.		
Container Type: XAD Tube		Mathad
Surrogates	%Recovery	Method Limits
2-Fluorophenol	32 Q	50-150
Phenol-d5	81	50-150

Surrogates	%Recovery	Limits
2-Fluorophenol	32 Q	50-150
Phenol-d5	81	50-150
Nitrobenzene-d5	78	50-150
2,4,6-Tribromophenol	73	50-150
Fluorene-d10	75	60-120
Pyrene-d10	81	60-120

CR9 5/10/06

Client Sample ID: #3 TOX 1 INF Duplicate Lab ID#: 0604284B-03AA

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Name p04252 Oil Factor 1.0		Collection: 471306 Analysis: 472506 95:02 PM
10		Extraction: 4/18/06
	Rpt Limit	Amount
Compound	(ug)	(ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	2.1
2-Chlorophenol	5.0	Not Detected
1,3-Dichlorobenzene	1.0	3.3
1,4-Dichlorobenzene	1.0	9.5
1,2-Dichlorobenzene	1.0	40
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
sophorone	1.0	3.7
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
ois(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
,2,4-Trichlorobenzene	1.0	0.50 J /3
Naphthalene	1.0	20
-Chloroaniline	10	Not Detected
lexachlorobutadiene	1.0	5.9
-Chloro-3-methylphenol	5.0	Not Detected
-Methylnaphthalene	1.0	16
lexachlorocyclopentadiene	20	Not Detected
,4,6-Trichlorophenol	5.0	Not Detected
,4,5-Trichlorophenol	5.0	Not Detected
-Chloronaphthalene	1.0	Not Detected
-Nitroaniline	10	Not Detected
imethylphthalate	5.0	Not Detected
cenaphthylene	1.0	Not Detected
,6-Dinitrotoluene	5.0	Not Detected
Nitroaniline	10	Not Detected
cenaphthene	1.0	Not Detected
4-Dinitrophenol	20	Not Detected
Nitrophenol	20	Not Detected
4-Dinitrotoluene	5.0	Not Detected
benzofuran	1.0	Not Detected
ethylphthalate	5.0	Not Detected
uorene	1.0	Not Detected
Chlorophenyl-phenyl Ether	1.0	Not Detected

Page 13 of 28

-110/06

Pyrene-d10

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #3 TOX 1 INF Duplicate Lab ID#: 0604284B-03AA

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Name: p042526 Date of Collection: 4/13/06		
Dil. Factor 1.06	Date of	Anatysis 4/25/06 05:07 PM
	Rpt. Limit	Extraction 4718/06 Amount
Compound	(ug)	(ug)
4-Nitroaniline	10	Not Detected
4,6-Dinitro-2-methylphenol	10	Not Detected
N-Nitrosodiphenylamine	10	Not Detected
4-Bromophenyl-phenyl Ether	1.0	Not Detected
Hexachlorobenzene	1.0	Not Detected
Pentachlorophenol	20	Not Detected
Phenanthrene	1.0	Not Detected
Anthracene	1.0	Not Detected
di-n-Butylphthalate	5.0	Not Detected
Fluoranthene	1.0	Not Detected
Pyrene	1.0	Not Detected
Butylbenzylphthalate	5.0	1.2 J
3,3'-Dichlorobenzidine	20	Not Detected
Chrysene	1.0	Not Detected
Benzo(a)anthracene	1.0	Not Detected
pis(2-Ethylhexyl)phthalate	5.0	1.8 J /
Di-n-Octylphthalate	5.0	Not Detected
Benzo(b)fluoranthene	1.0	Not Detected
Benzo(k)fluoranthene	1.0	Not Detected
Benzo(a)pyrene	1.0	Not Detected
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected
Dibenz(a,h)anthracene	1.0	Not Detected
Benzo(g,h,i)perylene	1.0	Not Detected
= Estimated value.		
Q = Exceeds Quality Control limits.		
Container Type: XAD Tube		
	%Recovery	Method Limits
Surrogates		
-Fluorophenol	33 Q	50-150
Phenol-d5	81	50-150
litrobenzene-d5	82	50-150
,4,6-Tribromophenol	75	50-150
luorene-d10	75	60-120

5/10/06

60-120

Client Sample ID: #4 TOX 1 INF DUP

Lab ID#: 0604284B-04A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

		Atialysis: 4/25/06/05/32 PM
		Extraction: 4/18/06
	Rpt. Limit	Amount
Compound	(ug)	(ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	2.1
2-Chlorophenol	5.0	Not Detected
1,3-Dichlorobenzene	1.0	3.8
1,4-Dichlorobenzene	1.0	9.9
1,2-Dichlorobenzene	1.0	44
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
Isophorone	1.0	4.3
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
bis(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
1,2,4-Trichlorobenzene	1.0	0.51 J /3
Naphthalene	1.0	23
4-Chloroaniline	10	Not Detected
Hexachlorobutadiene	1.0	6.0
4-Chloro-3-methylphenol	5.0	Not Detected
2-Methylnaphthalene	1.0	18
Hexachlorocyclopentadiene	20	Not Detected
2,4,6-Trichlorophenol	5.0	Not Detected
2,4,5-Trichlorophenol	5.0	Not Detected
2-Chloronaphthalene	1,0	Not Detected
2-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
Acenaphthylene	1.0	Not Detected
2,6-Dinitrotoluene	5.0	Not Detected
3-Nitroaniline	10	Not Detected
Acenaphthene	1.0	Not Detected
2,4-Dinitrophenol	20	Not Detected
4-Nitrophenol	20	Not Detected
2,4-Dinitrotoluene	5.0	Not Detected
Dibenzofuran	1.0	Not Detected
Diethylphthalate	5.0	Not Detected
Fluorene	1.0	Not Detected
I-Chlorophenyl-phenyl Ether	1.0	Not Detected

Page 15 of 28

CES -110/06

Pyrene-d10

Client Sample ID: #4 TOX 1 INF DUP

Lab ID#: 0604284B-04A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Names p04251	5 Sancot	Collection: 4713/06
Dit Factor 1.0	0 Date of	Amalysis: 4/25/08/05532 PM
	Date of Rpt. Limit	Extraction: 4/18/86 Amount
Compound	(ug)	(ug)
4-Nitroaniline	10	Not Detected
4,6-Dinitro-2-methylphenol	10	Not Detected
N-Nitrosodiphenylamine	10	Not Detected
4-Bromophenyl-phenyl Ether	1.0	Not Detected
Hexachlorobenzene	1.0	Not Detected
Pentachlorophenol	20	Not Detected
Phenanthrene	1.0	Not Detected
Anthracene	1.0	Not Detected
di-n-Butylphthalate	5.0	Not Detected
Fluoranthene	1.0	Not Detected
Pyrene	1.0	Not Detected
Butylbenzylphthalate	5.0	Not Detected
3,3'-Dichlorobenzidine	20	Not Detected
Chrysene	1.0	Not Detected
Benzo(a)anthracene	1.0	Not Detected
bis(2-Ethylhexyl)phthalate	5.0	2.0 J
Di-n-Octylphthalate	5.0	Not Detected
Benzo(b)fluoranthene	1.0	Not Detected
Benzo(k)fluoranthene	1.0	Not Detected
Benzo(a)pyrene	1.0	Not Detected
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected
Dibenz(a,h)anthracene	1.0	Not Detected
Benzo(g,h,i)perylene	1.0	Not Detected
J = Estimated value.		
Q = Exceeds Quality Control limits.		
Container Type: XAD Tube		
Surrogates	%Recovery	Method Limits
2-Fluorophenol	39 Q	50-150
Phenol-d5	82	50-150
Vitrobenzene-d5	80	50-150
2.4.6-Tribromophenol	76	50-150
Fluorene-d10	75	60-120

5/10/06

60-120

Client Sample ID: #5 TOX 1 EFF

Lab ID#: 0604284B-05A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

Dil. Factor:		Collection: 4/13/06 Analysis: 4/25/06/05/02 PM:
		Extraction: 4/18/06
	Rpt. Limit	Amount
Compound	(ug)	(ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	Not Detected
2-Chlorophenol	5.0	Not Detected
1,3-Dichlorobenzene	1.0	Not Detected
1,4-Dichlorobenzene	1.0	Not Detected
1,2-Dichlorobenzene	1.0	Not Detected
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
Isophorone	1.0	Not Detected
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
bis(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
1,2,4-Trichlorobenzene	1.0	Not Detected
Naphthalene	1.0	Not Detected
4-Chloroaniline	10	Not Detected
Hexachlorobutadiene	1.0	Not Detected
I-Chloro-3-methylphenol	5.0	Not Detected
2-Methylnaphthalene	1.0	Not Detected
lexachlorocyclopentadiene	20	Not Detected
2,4,6-Trichlorophenol	5.0	Not Detected
2,4,5-Trichlorophenol	5.0	Not Detected
2-Chloronaphthalene	1.0	Not Detected
-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
cenaphthylene	1.0	Not Detected
,6-Dinitrotoluene	5.0	Not Detected
-Nitroaniline	10	Not Detected
cenaphthene	1.0	Not Detected
,4-Dinitrophenol	20	Not Detected
-Nitrophenol	20	Not Detected
,4-Dinitrotoluene	5.0	Not Detected
ibenzofuran	1.0	Not Detected
iethylphthalate	5.0	Not Detected
luorene	1.0	Not Detected
-Chlorophenyl-phenyl Ether	1.0	Not Detected

Page 17 of 28

CPS 5/10/00

Client Sample ID: #5 TOX 1 EFF Lab ID#: 0604284B-05A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Name p0425 Dit Factor 1		Collection: 4/13/06 Analysis: 4/25/06/06:02 PM
		Analysis (42306 05.12 PM) Estraction: 4718/06
	Rpt. Limit	Amount
Compound	(ug)	(ug)
4-Nitroaniline	10	Not Detected
4,6-Dinitro-2-methylphenol	10	Not Detected
N-Nitrosodiphenylamine	10	Not Detected
4-Bromophenyl-phenyl Ether	1.0	Not Detected
Hexachlorobenzene	1.0	Not Detected
Pentachlorophenol	20	Not Detected
Phenanthrene	1.0	Not Detected
Anthracene	1.0	Not Detected
di-n-Butylphthalate	5.0	Not Detected
Fluoranthene	1.0	Not Detected
Pyrene	1.0	Not Detected
Butylbenzylphthalate	5.0	Not Detected
,3'-Dichlorobenzidine	20	Not Detected
Chrysene	1.0	Not Detected
Benzo(a)anthracene	1.0	Not Detected
is(2-Ethylhexyl)phthalate	5.0	Not Detected
Di-n-Octylphthalate	5.0	Not Detected
Benzo(b)fluoranthene	1.0	Not Detected
Benzo(k)fluoranthene	1.0	Not Detected
Benzo(a)pyrene	1.0	Not Detected
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected
Dibenz(a,h)anthracene	1.0	Not Detected
Benzo(g,h,i)perylene	1.0	Not Detected
Container Type: XAD Tube		
Surrogates	%Recovery	Method Limits
-Fluorophenol	73	50-150
henol-d5	73	50-150
henol-do litrobenzene-d5	69	50-150
	69	50-150
,4,6-Tribromophenol	68	60-120
luorene-d10 yrene-d10	74	60-120

0/25

Client Sample ID: #6 TOX 2 INF Lab ID#: 0604284B-06A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

Dit Factor: 1.0		Analysis 4/25/06/06:32 PM
		Extraction: 4/18/06
Compound	Rpt. Limit (ug)	Amount (ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	1,3
2-Chlorophenol	5.0	Not Detected
1,3-Dichlorobenzene	1.0	1.4
1,4-Dichlorobenzene	1.0	1.4
1,2-Dichlorobenzene	1.0	10
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
Isophorone	1.0	3.3
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
bis(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
1,2,4-Trichlorobenzene	1.0	Not Detected
Naphthalene	1.0	4.2
4-Chloroaniline	10	Not Detected
Hexachlorobutadiene	1.0	0.64 J /5
4-Chloro-3-methylphenol	5.0	Not Detected
2-Methylnaphthalene	1.0	Not Detected
Hexachlorocyclopentadiene	20	Not Detected
2,4,6-Trichlorophenol	5.0	Not Detected
2,4,5-Trichlorophenol	5.0	Not Detected
2-Chloronaphthalene	1.0	Not Detected
2-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
Acenaphthylene	1.0	Not Detected
2,6-Dinitrotoluene	5.0	Not Detected
3-Nitroaniline	10	Not Detected
Acenaphthene	1.0	Not Detected
2,4-Dinitrophenol	20	Not Detected
I-Nitrophenol	20	Not Detected
2,4-Dinitrotoluene	5.0	Not Detected
Dibenzofuran	1.0	Not Detected
Diethylphthalate	5.0	Not Detected
Fluorene	1.0	Not Detected
4-Chlorophenyl-phenyl Ether	1.0	Not Detected (

Page 19 of 28

Client Sample ID: #6 TOX 2 INF

Lab ID#: 0604284B-06A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

Dil Factor 1		Analysis:: 4/2506:06:12.14K
		Estraction: A/18/06
Compound	Rpt. Limit (ug)	Amount (ug)
4-Nitroaniline	10	Not Detected
4,6-Dinitro-2-methylphenol	10	Not Detected
N-Nitrosodiphenylamine	10	Not Detected
4-Bromophenyl-phenyl Ether	1.0	Not Detected
Hexachlorobenzene	1.0	Not Detected
Pentachlorophenol	20	Not Detected
Phenanthrene	1.0	Not Detected
Anthracene	1.0	Not Detected
di-n-Butylphthalate	5.0	Not Detected
Fluoranthene	1.0	Not Detected
Pyrene	1.0	Not Detected
Butylbenzylphthalate	5.0	Not Detected
3,3'-Dichlorobenzidine	20	Not Detected
Chrysene	1.0	Not Detected
Benzo(a)anthracene	1.0	Not Detected
pis(2-Ethylhexyl)phthalate	5.0	Not Detected
Di-n-Octylphthalate	5.0	Not Detected
Benzo(b)fluoranthene	1.0	Not Detected
Benzo(k)fluoranthene	1.0	Not Detected
Benzo(a)pyrene	1.0	Not Detected
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected
Dibenz(a,h)anthracene	1.0	Not Detected
Benzo(g,h,i)perylene	1.0	Not Detected
= Estimated value.		
Container Type: XAD Tube		Method
Gurrogates	%Recovery	Limits
-Fluorophenol	74	50-150
Phenol-d5	76	50-150
litrobenzene-d5	74	50-150
,4,6-Tribromophenol	72	50-150
luorene-d10	70	60-120

Client Sample ID: #7 TOX 2 INF DUP

Lab ID#: 0604284B-07A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Name p 04251 Dit. Faction 1 01	0 Date of	Collection: 4/13/06 Analysis: 4/25/06/07/02 PM Extraction: 4/18/06
Compound	Rpt. Limit (ug)	Amount (ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	1.4
2-Chlorophenol	5.0	Not Detected
1,3-Dichlorobenzene	1.0	0.50 J /
1.4-Dichlorobenzene	1.0	1.6
1,2-Dichlorobenzene	1.0	12
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenoi/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
Isophorone	1.0	4.5
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
bis(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
1,2,4-Trichlorobenzene	1.0	Not Detected
Naphthalene	1.0	5.8
4-Chloroaniline	10	Not Detected
Hexachlorobutadiene	1.0	0.67 J /s
4-Chloro-3-methylphenol	5.0	Not Detected
2-Methylnaphthalene	1.0	0.79 J //s
Hexachlorocyclopentadiene	20	Not Detected
2,4,6-Trichlorophenol	5.0	Not Detected
2,4,5-Trichlorophenol	5.0	Not Detected
2-Chloronaphthalene	1.0	Not Detected
2-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
Acenaphthylene	1.0	Not Detected
2,6-Dinitrotoluene	5.0	Not Detected
-Nitroaniline	10	Not Detected
cenaphthene	1.0	Not Detected
,4-Dinitrophenol	20	Not Detected
-Nitrophenol	20	Not Detected
,4-Dinitrotoluene	5.0	Not Detected
bibenzofuran	1.0	
Piethylphthalate	5.0	Not Detected
luorene	1.0	Not Detected
-Chlorophenyl-phenyl Ether	1.0	Not Detected Not Detected

Page 21 of 28

Client Sample ID: #7 TOX 2 INF DUP Lab ID#: 0604284B-07A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Name: p042518		Date of Collections #13/06	
Dit. Factor F.00		Analysis: 4/25/06 (17:02 PM Extraction: 4/16/06	
	Rpt. Limit	Amount	
Compound	(ug)	(ug)	
4-Nitroaniline	10	Not Detecte	
4,6-Dinitro-2-methylphenol	10	Not Detecte	
N-Nitrosodiphenylamine	10	Not Detected	
4-Bromophenyl-phenyl Ether	1.0	Not Detected	
Hexachlorobenzene	1.0	Not Detected	
Pentachlorophenol	20	Not Detected	
Phenanthrene	1.0	Not Detected	
Anthracene	1.0	Not Detected	
di-n-Butylphthalate	5.0	Not Detected	
Fluoranthene	1.0	Not Detected	
Pyrene	1.0	Not Detected	
Butylbenzylphthalate	5.0	Not Detected	
3,3'-Dichlorobenzidine	20	Not Detected	
Chrysene	1.0	Not Detected	
Benzo(a)anthracene	1.0	Not Detected	
bis(2-Ethylhexyl)phthalate	5.0	0.97 J	
Di-n-Octylphthalate	5.0	Not Detected	
Benzo(b)fluoranthene	1.0	Not Detected	
Benzo(k)fluoranthene	1.0	Not Detected	
Benzo(a)pyrene	1.0	Not Detected	
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected	
Dibenz(a,h)anthracene	1.0	Not Detected	
Benzo(g,h,i)perylene	1.0	Not Detected	
J = Estimated value.			
Container Type: XAD Tube		Method	
Surrogates	%Recovery	Limits	
2-Fluorophenol	77	50-150	
Phenol-d5	78	50-150	
Nitrobenzene-d5	76	50-150	
2,4,6-Tribromophenol	70	50-150	
fluorene-d10	72	60-120	

Client Sample ID: #8 TOX 2 EFF Lab ID#: 0604284B-08A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Name: pt64254	9 Date of	Collection: 4/13/08
Dit Factor 1.0	0 Date of	Anglysis: 4/25/06/07/32 PM
	Date of Rpt. Limit	Extraction: 4/18/06 Amount
Compound	(ug)	(ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	Not Detected
2-Chlorophenol	5.0	Not Detected
1,3-Dichlorobenzene	1.0	Not Detected
1,4-Dichlorobenzene	1.0	Not Detected
1,2-Dichlorobenzene	1.0	0.67 J /
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
Isophorone	1.0	Not Detected
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
bis(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
1,2,4-Trichlorobenzene	1.0	Not Detected
Naphthalene	1.0	0.88 J /5
4-Chloroaniline	10	Not Detected
Hexachlorobutadiene	1.0	Not Detected
4-Chloro-3-methylphenol	5.0	Not Detected
2-Methylnaphthalene	1.0	Not Detected
Hexachlorocyclopentadiene	20	Not Detected
2,4,6-Trichlorophenol	5.0	Not Detected
2,4,5-Trichlorophenol	5.0	Not Detected
2-Chloronaphthalene	1.0	Not Detected
2-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
Acenaphthylene	1.0	Not Detected
2,6-Dinitrotoluene	5.0	Not Detected
3-Nitroaniline	10	Not Detected
Acenaphthene	1.0	Not Detected
2,4-Dinitrophenol	20	Not Detected
4-Nitrophenol	20	Not Detected
2,4-Dinitrotoluene	5.0	Not Detected
Dibenzofuran	1.0	Not Detected
Diethylphthalate	5.0	Not Detected
Fluorene	1.0	Not Detected
4-Chlorophenyl-phenyl Ether	1.0	Not Detected
omorephony phony Luie	1.0	Not Detected /

Page 23 of 28

Client Sample ID: #8 TOX 2 EFF Lab ID#: 0604284B-08A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Name	p042519 Cate of	Collection: 4/13/06
Dil. Factor		Analysis: 4/25/06 07:32 PM
	Rpt. Limit	Extraction: 4/18/06 Amount
Compound	(ug)	(ug)
4-Nitroaniline	10	Not Detected
4,6-Dinitro-2-methylphenol	10	Not Detected
N-Nitrosodiphenylamine	10	Not Detected
4-Bromophenyl-phenyl Ether	1.0	Not Detected
Hexachlorobenzene	1.0	Not Detected
Pentachlorophenol	20	Not Detected
Phenanthrene	1.0	Not Detected
Anthracene	1.0	Not Detected
di-n-Butylphthalate	5.0	Not Detected
Fluoranthene	1.0	Not Detected
Pyrene	1.0	Not Detected
Butylbenzylphthalate	5.0	Not Detected
3,3'-Dichlorobenzidine	20	Not Detected
Chrysene	1.0	Not Detected
Benzo(a)anthracene	1.0	Not Detected
ois(2-Ethylhexyl)phthalate	5.0	Not Detected
Di-n-Octylphthalate	5.0	Not Detected
Benzo(b)fluoranthene	1.0	Not Detected
Benzo(k)fluoranthene	1.0	Not Detected
Benzo(a)pyrene	1.0	Not Detected
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected
Dibenz(a,h)anthracene	1.0	Not Detected
Benzo(g,h,i)perylene	1.0	Not Detected
= Estimated value.		
Container Type: XAD Tube		90900 T 1 10000
Surrogatos	%Recovery	Method Limits
Surrogates		
-Fluorophenol	70	50-150
Phenol-d5	72	50-150
litrobenzene-d5	71	50-150
.4,6-Tribromophenol	70	50-150
Fluorene-d10	67	60-120
Pyrene-d10	75	60-120

Client Sample ID: Lab Blank

Lab ID#: 0604284B-09A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

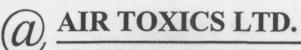
Gil Factor 1.		Analysis: 4/25/06/01:07/PM
	Rpt. Limit	Extraction: 4/18/06 Amount
Compound	(ug)	(ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	Not Detected
2-Chlorophenol	5.0	Not Detected
1,3-Dichlorobenzene	1.0	Not Detected
1,4-Dichlorobenzene	1.0	Not Detected
1,2-Dichlorobenzene	1.0	Not Detected
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
Isophorone	1.0	Not Detected
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
bis(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
1,2,4-Trichlorobenzene	1.0	Not Detected
Naphthalene	1.0	Not Detected
4-Chloroaniline	10	Not Detected
Hexachlorobutadiene	1.0	Not Detected
4-Chloro-3-methylphenol	5.0	Not Detected
2-Methylnaphthalene	1.0	Not Detected
Hexachlorocyclopentadiene	20	Not Detected
2,4,6-Trichlorophenol	5.0	Not Detected
2,4,5-Trichlorophenol	5.0	Not Detected
2-Chloronaphthalene	1.0	Not Detected
2-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
Acenaphthylene	1.0	Not Detected
2,6-Dinitrotoluene	5.0	Not Detected
3-Nitroaniline	10	Not Detected
Acenaphthene	1.0	Not Detected
2,4-Dinitrophenol	20	Not Detected
1-Nitrophenol	20	Not Detected
2,4-Dinitrotoluene	5.0	Not Detected
Dibenzofuran	1.0	Not Detected
Diethylphthalate	5.0	1.1 J
Fluorene	1.0	Not Detected
I-Chlorophenyl-phenyl Ether	1.0	Not Detected

Page 25 of 28

Client Sample ID: Lab Blank Lab 1D#: 0604284B-09A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Name: p04250		Colored Color (1)
Dit Factors 1 0		Collection: NA Analysis: 4/25/06/04/03 PM
	Date of	Extrastion: 4/15/06
	Rpt. Limit	Amount
Compound	(ug)	(ug)
4-Nitroaniline	10	Not Detected
4,6-Dinitro-2-methylphenol	10	Not Detected
N-Nitrosodiphenylamine	10	Not Detected
4-Bromophenyl-phenyl Ether	1.0	Not Detected
Hexachlorobenzene	1.0	Not Detected
Pentachlorophenol	20	Not Detected
Phenanthrene	1.0	Not Detected
Anthracene	1.0	Not Detected
di-n-Butylphthalate	5.0	Not Detected
Fluoranthene	1.0	Not Detected
Pyrene	1.0	Not Detected
Butylbenzylphthalate	5.0	Not Detected
3,3'-Dichlorobenzidine	20	Not Detected
Chrysene	1.0	Not Detected
Benzo(a)anthracene	1.0	Not Detected
pis(2-Ethylhexyl)phthalate	5.0	Not Detected
Di-n-Octylphthalate	5.0	Not Detected
Benzo(b)fluoranthene	1.0	Not Detected
Benzo(k)fluoranthene	1.0	Not Detected
Benzo(a)pyrene	1.0	Not Detected
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected
Dibenz(a,h)anthracene	1.0	Not Detected
Benzo(g,h,i)perylene	1.0	Not Detected
Container Type: NA - Not Applicable		And captaints
Surrogates	%Recovery	Method Limits
2-Fluorophenol	70	50-150
Phenol-d5	77	50-150
Nitrobenzene-d5	73	50-150
2,4,6-Tribromophenol	69	50-150
Fluorene-d10	71	60-120
Pyrene-d10	77	60-120


Client Sample ID: LCS Lab ID#: 0604284B-10A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

EF93900000000000000000000000000000000000	
D0000000000000000000000000000000000000	
E56000000000000000000000000000000000000	
Proceduración de contraction de la contraction d	
######################################	
EX. (2012) 18 19 19 19 19 19 19 19	$6.70\mathrm{kp}$, $2.70\mathrm{kp}$, $2.70\mathrm{kp}$, $3.70\mathrm{kp}$, 3.70
ICT/2007年	
MCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	
\$65000000000000000000000000000000000000	
86/89/386/89GCGGGGGGCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	occopy of any common programme and any common common and any common of the common of t
92/23932/4T488S24S857-000000000000000000000000000000000000	00000098421000000000000000000000000000000000000
\$7.65673738733747337474555666000000000000000000000000000000	
ESSASSISTAN USASSASSASSASSASSASSASSASSASSASSASSASSAS	
E0000000000000000000000000000000000000	
£0000000000000000000000000000000000000	MACONTO MATERIAL MA
E65000000000000000000000000000000000000	
	\$

Compound	%Recovery
Phenol	58
bis(2-Chloroethyl) Ether	Not Spiked
2-Chlorophenol	61
1,3-Dichlorobenzene	Not Spiked
1,4-Dichlorobenzene	59
1,2-Dichlorobenzene	Not Spiked
2-Methylphenol (o-Cresol)	Not Spiked
N-Nitroso-di-n-propylamine	62
4-Methylphenol/3-Methylphenol	Not Spiked
Hexachloroethane	Not Spiked
Nitrobenzene	Not Spiked
Isophorone	Not Spiked
2-Nitrophenol	Not Spiked
2,4-Dimethylphenol	Not Spiked
bis(2-Chloroethoxy) Methane	Not Spiked
2,4-Dichlorophenol	Not Spiked
1,2,4-Trichlorobenzene	65
Naphthalene	Not Spiked
4-Chloroaniline	Not Spiked
Hexachlorobutadiene	Not Spiked
4-Chloro-3-methylphenol	70
2-Methylnaphthalene	Not Spiked
Hexachlorocyclopentadiene	Not Spiked
2,4,6-Trichlorophenol	Not Spiked
2,4,5-Trichlorophenol	Not Spiked
2-Chloronaphthalene	Not Spiked
2-Nitroaniline	Not Spiked
Dimethylphthalate	Not Spiked
Acenaphthylene	Not Spiked
2,6-Dinitrotoluene	Not Spiked
3-Nitroaniline	Not Spiked
Acenaphthene	67
2,4-Dinitrophenol	Not Spiked
-Nitrophenol	55
2,4-Dinitrotoluene	66
Dibenzofuran	Not Spiked
Diethylphthalate	Not Spiked
Fluorene	Not Spiked
I-Chlorophenyl-phenyl Ether	Not Spiked

5110/06

Client Sample ID: LCS Lab ID#: 0604284B-10A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

	KANDADADAD ANG BANGKADAD BANG GARANG BANG CANG BANG BANG BANG BANG BANG BANG BANG B
\$	

\$5524855555665565666666666666666666666666	
EVENTER/NEWERNAR/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ONDERNA DE PRESENTA DE CARTE DE LA COMPANIO DE LA COMPANIO DE LA COMPANIO DE LA COMPANIO DE COMPANIO DE COMPAN
- BV#V&BBBVUBBLEFFRELXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000000000000000000000000000000000000000
	COCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOC
	ADAARRAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG
	00000000000000000000000000000000000000
- XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
**************************************	CARCACACACACACACACACACACACACACACACACACA
	\$99\$
15/858497.666666666666666666666666666666666666	\$
-4-1-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-	፟፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠፠

I-Nitroaniline I-Oitro-2-methylphenol I-Nitrosodiphenylamine I-Bromophenyl-phenyl Ether	Not Spiked Not Spiked Not Spiked Not Spiked
I-Nitrosodiphenylamine -Bromophenyl-phenyl Ether	Not Spiked
-Bromophenyl-phenyl Ether	
######################################	Not Sniked
laurah laurhannan	1401 Opined
lexachlorobenzene	Not Spiked
Pentachlorophenol	69
Phenanthrene	Not Spiked
inthracene	Not Spiked
i-n-Butylphthalate	Not Spiked
luoranthene	Not Spiked
yrene	67
utylbenzylphthalate	Not Spiked
,3'-Dichlorobenzidine	Not Spiked
hrysene	Not Spiked
enzo(a)anthracene	Not Spiked
s(2-Ethylhexyl)phthalate	Not Spiked
i-n-Octylphthalate	Not Spiked
enzo(b)fluoranthene	Not Spiked
enzo(k)fluoranthene	Not Spiked
enzo(a)pyrene	Not Spiked
deno(1,2,3-c,d)pyrene	Not Spiked
ibenz(a,h)anthracene	Not Spiked
enzo(g,h,i)perylene	Not Spiked

Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits
2-Fluorophenol	61	50-150
Phenol-d5	63	50-150
Nitrobenzene-d5	72	50-150
2,4,6-Tribromophenol	71	50-150
Fluorene-d10	68	60-120
Pyrene-d10	73	60-120

AIR	TOXI	CS	LTD.
AN ENVENO	NNENTAL ANAL	TICAL I	AUDRATORY

CHAIN-OF-CUSTODY RECORD

Sample Transportation Notice
Re-inquistring eigneture on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnity Air Toxics Limited against any claim, domand, or action, of any kind, related to the collection, handling or page of the collection of the collecti

	· • • • • • • • • • • • • • • • • • • •	* " * **	Recorded 1 m town 1		arpice. D.C. II (III)	1974 / 1980-24	_			11.37	. 7
	SOR CHRIS DACK				Project Info:		Turn /	Around me:	Pressu	ny. Inzed by:	53
	MWH END CITY CHICA		TO		P.Q. #		X No	ormal	1	mae	
	17-831-3406 Fax				Project #		, Ru La Ru		ł,	gization 6	
**************************************	y: (Signeture)	<i> </i>			Project Name_ACS	-GRIFTH			1	N) He	•
ollected b	y: (Signeture)			:	Project Name		35	Canic		ssure/Va	
Lab LD.	Fleid Sample I.D. (Location)	Can	Date	Time	Analyse:	s Requested		icitial	, 	Receipt	Final
Alo:	* OFFSITE ISVE I	321	4/13/06	1244	TO13A/T014		Tiete	<u> </u>	0	05"40	
		78		1242	1	-, 24, 240	,	-30	0	0.040	4412
		904		1256				-30	0	1.04	
		951		1310				- 30	0	1.076	H
Ď5А	5 Tox EFF	118		1327				-28	0	0.5%	7.1
		3241		1301				-30	0	1.04	n
MA		124		1314				- 30	0	1.04	8
BA.	8 TOXZ EFF 1	050	+	1331	+			- 30	0	10 Ha	
										: = : [
Relinquis	sed by (signature) Date/Time	430		by: (signature) $arepsilon$ $arepsilon$ $ au$ $ au$		Notes:		•			
	nod by: (signature) Date/Time		Received	by: (eignature)	Date/Time						
\$	EDEX		A.	Sara	ATC 4/14/	1020°					
Relinquis:	ned by: (signature) Date/lime		Receivéd	by: (signature)	Date/Time						
	Shipper Name	Air Ba	# 1 tues	:eTemp /	°C) Condition	n. Customer	Seals I	ntact?	W	ork Order	#
Lab-Use	Fed Ex 8574.3	465	-9020			Yes				0428	
Only	THE THE PARTY OF T	(١,	1 good	, mai(, , ,	-		<u>V V</u>	¥4.	i4

Client Sample ID: 1 OFFSITE ISVE

Lab ID#: 0605450A-01A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Harne: Oil: Factor:	8060113	***************************************	e of Collection	n: 5/18/06 6/1/06 07:59 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	270	230 J /	680	590 J
Bromomethane	270	Not Detected	1000	Not Detected
Chloroethane	270	Not Detected	710	Not Detected
1.1-Dichloroethene	270	250 J /5	1100	1000 J
Methylene Chloride	270	23000	930	81000
1,1-Dichloroethane	270	3300	1100	13000
cis-1,2-Dichloroethene	270	2300	1100	9200
Chloroform	270	1600	1300	8000
1,1,1-Trichloroethane	270	24000	1500	130000
Carbon Tetrachloride	270	Not Detected	1700	Not Detected
Benzene	270	15000	860	49000
1.2-Dichloroethane	270	630	1100	2600
Trichloroethene	270	17000	1400	93000
1,2-Dichloropropane	270	260 J /5	1200	1200
cis-1,3-Dichloropropene	270	Not Detected / K	1200	Not Detected
Toluene	270	92000	1000	350000
trans-1,3-Dichloropropene	270	Not Detected	1200	Not Detected
1,1,2-Trichloroethane	270	Not Detected	1500	Not Detected
Tetrachloroethene	270	25000	1800	170000
Chlorobenzene	270	Not Detected	1200	Not Detected
Ethyl Benzene	270	15000	1200	66000
m,p-Xylene	270	68000	1200	300000
o-Xylene	270	28000	1200	120000
Styrene	270	Not Detected	1100	Not Detected
1,1,2,2-Tetrachloroethane	270	Not Detected	1800	Not Detected
Bromodichloromethane	270	Not Detected	1800	Not Detected
Dibromochloromethane	270	Not Detected	2300	Not Detected
Chloromethane	1100	Not Detected	2200	Not Detected
Acetone	1100	19000	2500	45000
Carbon Disulfide	1100	Not Detected	3300	Not Detected
rans-1,2-Dichloroethene	1100	Not Detected	4200	Not Detected
2-Butanone (Methyl Ethyl Ketone)	1100	9800	3200	29000
-Methyl-2-pentanone	1100	3700 J /T	4400	15000 J
2-Hexanone	1100	Not Detected U J	4400	Not Detected U J
Bromoform	1100	Not Detected	11000	Not Detected

CRS 6/22/06

Client Sample ID: 1 OFFSITE ISVE

Lab ID#: 0605450A-01A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

 File Name
 8060113
 Date of Collection: 5/18/06

 Dit Factor
 538
 Date of Analysis: 5/106 07:59 PM

J = Estimated value.

J = Estimated value due to bias in the CCV.

UJ = Non-detected compound associated with low bias in the CCV

Container Type: 6 Liter Summa Canister

Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	78	70-130
Toluene-d8	86	70-130
4-Bromofluorobenzene	100	70-130

CTCS 106

AIR TOXICS LTD.

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: 2 SBPA(ONSITE) ISVE

Lab ID#: 0605450A-02A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name:	4053011 964		Sale of Collection	5/18/96 5/30/06 05:44 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	130	1300	340	3300
Bromomethane	130	Not Detected	510	Not Detected
Chloroethane	130	210	350	550
1.1-Dichloroethene	130	120 J/5	520	460 J
Methylene Chloride	130	3600	460	13000
1.1-Dichloroethane	130	2100	530	8300
cis-1,2-Dichloroethene	130	12000	520	46000
Chloroform	130	4600	640	22000
1,1,1-Trichloroethane	130	17000	720	91000
Carbon Tetrachloride	130	Not Detected	830	Not Detected
Benzene	130	3400	420	11000
1,2-Dichloroethane	130	290	530	1200
Trichloroethene	130	15000	710	80000
1,2-Dichloropropane	130	270 /	610	1300
cis-1,3-Dichloropropene	130	Not Detected //	600	Not Detected
Toluene	130	42000	500	160000
trans-1,3-Dichloropropene	130	Not Detected	600	Not Detected
1,1,2-Trichloroethane	130	Not Detected	720	Not Detected
Tetrachloroethene	130	28000	900	190000
Chlorobenzene	130	Not Detected	610	Not Detected
Ethyl Benzene	130	6100	570	26000
m,p-Xylene	130	33000	570	140000
o-Xylene	130	17000	570	73000
Styrene	130	Not Detected	560	Not Detected
1,1,2,2-Tetrachloroethane	130	Not Detected	910	Not Detected
Bromodichloromethane	130	Not Detected	880	Not Detected
Dibromochloromethane	130	Not Detected	1100	Not Detected
Chloromethane	530	Not Detected	1100	Not Detected
Acetone	530	420 J (5	1200	990 J
Carbon Disulfide	530	Not Detected	1600	Not Detected
rans-1,2-Dichloroethene	530	Not Detected	2100	Not Detected
2-Butanone (Methyl Ethyl Ketone)	530	570	1600	1700
1-Methyl-2-pentanone	530	720	2200	2900
2-Hexanone	530	Not Detected	2200	Not Detected
Bromoform	530	Not Detected	5400	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Surrogates %Recovery Limits

-C/22/06

Client Sample ID: 2 SBPA(ONSITE) ISVE

Lab ID#: 0605450A-02A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name: ID5	3011 Date of Go	Date of Collection: 5/18/06		
Dit Factors Surrogates	264 Date of An %Recovery	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>		
1,2-Dichloroethane-d4	107	70-130		
Toluene-d8	106	70-130		
4-Bromofluorobenzene	99	70-130		

AIR TOXICS LTD.

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: 3 TOX 1 INF

Lab ID#: 0605450A-03A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

Eile Name	1053013		late of Collection late of Analysis	
Bit Factor:	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chloride	130	1200	340	3000
Bromomethane	130	Not Detected	520	Not Detected
Chloroethane	130	180	350	470
1,1-Dichloroethene	130	96 J /	530	380 J
Methylene Chloride	130	3600	460	13000
1,1-Dichloroethane	130	2100	540	8600
cis-1,2-Dichloroethene	130	12000	530	46000
Chloroform	130	4400	650	21000
1,1,1-Trichloroethane	130	17000	730	92000
Carbon Tetrachloride	130	Not Detected	840	Not Detected
Benzene	130	3500	430	11000
1,2-Dichloroethane	130	270	540	1100
Trichloroethene	130	15000	720	79000
1,2-Dichloropropane	130	230	0F) 620	1000
cis-1,3-Dichloropropene	130	Not Detected	610	Not Detected
Toluene	130	40000	500	150000
trans-1,3-Dichloropropene	130	Not Detected	610	Not Detected
1,1,2-Trichloroethane	130	Not Detected	730	Not Detected
Tetrachloroethene	130	27000	910	190000
Chlorobenzene	130	Not Detected	620	Not Detected
Ethyl Benzene	130	5800	580	25000
m,p-Xylene	130	31000	580	140000
o-Xylene	130	16000	580	69000
Styrene	130	Not Detected	570	Not Detected
1,1,2,2-Tetrachloroethane	130	Not Detected	920	Not Detected
Bromodichloromethane	130	Not Detected	900	Not Detected
Dibromochloromethane	130	Not Detected	1100	Not Detected
Chloromethane	540	Not Detected	1100	Not Detected
Acetone	540	540	1300	1300
Carbon Disulfide	540	Not Detected	1700	Not Detected
rans-1,2-Dichloroethene	540	110 J /3	2100	430 J
2-Butanone (Methyl Ethyl Ketone)	540	510 J /5	1600	1500 J
1-Methyl-2-pentanone	540	670	2200	2700
2-Hexanone	540	Not Detected	2200	Not Detected
Bromoform	540	Not Detected	5500	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Surrogates %Recovery Limits

Client Sample ID: 3 TOX 1 INF

Lab ID#: 0605450A-03A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name: 053012 Date of Collection: 5/18/05 Dit Factor: 268 Date of Analysia: 5/30/06 07:14 PM			
Surrogates	%Recovery	Method Limits	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: 4 TOX 1 INF Dup

Lab ID#: 0605450A-04A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name:	1053014		hate of Collection	
Dif: Factor:	Rpt. Limit	Amount	Date of Analysis Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chloride	140	1200	360	3100
Bromomethane	140	Not Detected	540	Not Detected
Chloroethane	140	180	370	480
1,1-Dichloroethene	140	100 J /	550	410 J
Methylene Chloride	140	3800	480	13000
1,1-Dichloroethane	140	2200	560	8700
cis-1,2-Dichloroethene	140	12000	550	49000
Chloroform	140	4500	680	22000
1,1,1-Trichloroethane	140	17000	760	91000
Carbon Tetrachloride	140	Not Detected	870	Not Detected
Benzene	140	3600	440	11000
1.2-Dichloroethane	140	260	560	1000
Trichloroethene	140	15000	750	80000
1,2-Dichloropropane	140	290 /	(95) 640	1300
cis-1,3-Dichloropropene	140	Not Detected	630	Not Detected
Toluene	140	43000	520	160000
trans-1,3-Dichloropropene	140	Not Detected	630	Not Detected
1,1,2-Trichloroethane	140	Not Detected	760	Not Detected
Tetrachloroethene	140	29000	940	200000
Chlorobenzene	140	Not Detected	640	Not Detected
Ethyl Benzene	140	6500	600	28000
m,p-Xylene	140	35000	600	150000
o-Xylene	140	18000	600	79000
Styrene	140	Not Detected	590	Not Detected
1,1,2,2-Tetrachloroethane	140	Not Detected	950	Not Detected
Bromodichloromethane	140	Not Detected	930	Not Detected
Dibromochloromethane	140	Not Detected	1200	Not Detected
Chloromethane	560	Not Detected	1100	Not Detected
Acetone	560	530 J	1300	1300
Carbon Disulfide	560	Not Detected	1700	Not Detected
rans-1,2-Dichloroethene	560	130 J /3	2200	530 J
2-Butanone (Methyl Ethyl Ketone)	560	670	1600	2000
I-Methyl-2-pentanone	560	810	2300	3300
2-Hexanone	560	Not Detected	2300	Not Detected
Bromoform	560	Not Detected	5700	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Surrogates %Recovery Limits

Client Sample ID: 4 TOX 1 INF Dup

Lab ID#: 0605450A-04A

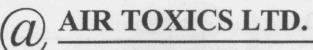
MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name int	Date of Collection: 5/18/05		
Surrogates	278 Bate of An %Recovery	Method Limits	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	98	70-130	

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: 5 TOX 1 EFF

Lab ID#: 0605450A-05A


MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name:	1053010	0	ate of Collection	5/18/0 <mark>6</mark> 5/30/06/05/06 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	0.68	17	1.7	44
Bromomethane	0.68	0.36 J /5	2.6	1.4 J
Chloroethane	0.68	4.7	1.8	12
1.1-Dichloroethene	0.68	64	2.7	250
Methylene Chloride	0.68	14	2.4	47
1,1-Dichloroethane	0.68	2.4	2.8	9.9
cis-1,2-Dichloroethene	0.68	45	2.7	180
Chloroform	0.68	8.2	3.3	40
1,1,1-Trichloroethane	0.68	11	3.7	58
Carbon Tetrachloride	0.68	Not Detected	4.3	Not Detected
Benzene	0.68	54	2.2	170
1,2-Dichloroethane	0.68	0.74	2.8	3.0
Trichloroethene	0.68	74	3.6	400
1,2-Dichloropropane	0.68	Not Detected	3.1	Not Detected
cis-1,3-Dichloropropene	0.68	Not Detected	3.1	Not Detected
Toluene	0.68	160	2.6	580
trans-1,3-Dichloropropene	0.68	0.40 J	3.1	1.8 J
1,1,2-Trichloroethane	0.68	Not Detected	3.7	Not Detected
Tetrachloroethene	0.68	190	4.6	1300
Chlorobenzene	0.68	2.2	3.1	10
Ethyl Benzene	0.68	32	3.0	140
m,p-Xylene	0.68	210	3.0	920
o-Xylene	0.68	120	3.0	510
Styrene	0.68	16	2.9	68
1,1,2,2-Tetrachloroethane	0.68	0.78	4.7	5.4
Bromodichloromethane	0.68	Not Detected	4.6	Not Detected
Dibromochloromethane	0.68	Not Detected	5.8	Not Detected
Chloromethane	2.7	11	5.6	23
Acetone	2.7	27	6.5	65
Carbon Disulfide	2.7	3.2	8.5	10
rans-1,2-Dichloroethene	2.7	12	11	48
2-Butanone (Methyl Ethyl Ketone)	2.7	6.3	8.0	19
I-Methyl-2-pentanone	2.7	2.21 /5	11	9.1 J
2-Hexanone	2.7	0.79 J /5	11	3.2 J
Bromoform	2.7	0.23 J /5	28	2.4 J

J = Estimated value.

Container Type: 6 Liter Summa Canister

Surrogates %Recovery Limits

Client Sample ID: 5 TOX 1 EFF

Lab ID#: 0605450A-05A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

Surrogates %Recovery 1,2-Dichloroethane-d4 104	16	1053910 Date of Collection	File Name (05)
The District of the Control of the C	Method Limits		Oil Factor Surrogates
Toluene-d8 101	70-130	104	1,2-Dichloroethane-d4
	70-130	101	Toluene-d8
4-Bromofluorobenzene 104	70-130	104	4-Bromofluorobenzene

Client Sample ID: 6 TOX 2 INF Lab ID#: 0605450A-06A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name:	1053016		Date of Collection	
Dij. Pactor Compound	Rot. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
	140	250	350	630
Vinyl Chloride	140	Not Detected	530	Not Detected
Bromomethane	140	170	360	460
Chloroethane	140	Not Detected	540	Not Detected
1,1-Dichloroethene	140	11000	470	37000
Methylene Chloride	140	1800	550	7300
1,1-Dichloroethane	140			
cis-1,2-Dichloroethene		3700	540	15000 4700
Chloroform	140 140	960 13000	660 740	69000
1,1,1-Trichloroethane			The same and the same and the same and	
Carbon Tetrachloride	140	Not Detected	860 430	Not Detected
Benzene	140	7200		23000
1,2-Dichloroethane	140	420	550	1700
Trichloroethene	140	7900	730	42000
1,2-Dichloropropane	140	Not Detected	(H) 630	Not Detected
cis-1,3-Dichloropropene	140	Not Detected	620	Not Detected
Toluene	140	46000	510	170000
rans-1,3-Dichloropropene	140	Not Detected	620	Not Detected
1,1,2-Trichloroethane	140	Not Detected	740	Not Detected
Tetrachloroethene	140	10000	920	71000
Chlorobenzene	140	Not Detected	630	Not Detected
Ethyl Benzene	140	5600	590	24000
n,p-Xylene	140	25000	590	110000
o-Xylene	140	9500	590	41000
Styrene	140	Not Detected	580	Not Detected
1,1,2,2-Tetrachloroethane	140	Not Detected	930	Not Detected
Bromodichloromethane	140	Not Detected	910	Not Detected
Dibromochloromethane	140	Not Detected	1200	Not Detected
Chloromethane	540	Not Detected	1100	Not Detected
cetone	540	8700	1300	21000
Carbon Disulfide	540	Not Detected	1700	Not Detected
rans-1,2-Dichloroethene	540	Not Detected	2200	Not Detected
-Butanone (Methyl Ethyl Ketone)	540	5400	1600	16000
-Methyl-2-pentanone	540	2600	2200	10000
-Hexanone	540	Not Detected	2200	Not Detected
Bromoform	540	Not Detected	5600	Not Detected

Container Type: 6 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	108	70-130	

Client Sample ID: 6 TOX 2 INF

Lab ID#: 0605450A-06A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Names 19 Dif. Factors	53016 Date of Co 272 Date of An	llection: 5/18/98 elysis: 5/30/98/09/32/PM
Surrogates	%Recovery	Method Limits
Toluene-d8	104	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: 7 TOX 2 INF Dup Lab ID#: 0605450A-07A

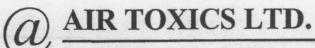
MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name:	8060114	DE	ib ok Collectio	
Dil Factor	D-4 11-14	Amount	Rpt. Limit	6.010E.01.26 PM
Compound	Rpt. Limit	Amount (ppbv)	(uG/m3)	Amount (uG/m3)
Compound	(ppbv)			
Vinyl Chloride	280	290	720	730
Bromomethane	280	Not Detected	1100	Not Detected
Chloroethane	280	Not Detected	740	Not Detected
1,1-Dichloroethene	280	200 J /	1100	780 J
Methylene Chloride	280	16000	980	58000
1,1-Dichloroethane	280	2400	1100	9800
cis-1,2-Dichloroethene	280	4500	1100	18000
Chloroform	280	1300	1400	6400
1,1,1-Trichloroethane	280	18000	1500	99000
Carbon Tetrachloride	280	Not Detected	1800	Not Detected
Benzene	280	11000	900	35000
1,2-Dichloroethane	280	580	1100	2300
Trichloroethene	280	13000	1500	70000
1,2-Dichloropropane	280	Not Detected	1300	Not Detected
cis-1,3-Dichloropropene	280	Not Detected /	1300	Not Detected
Toluene	280	65000	1100	250000
trans-1,3-Dichloropropene	280	Not Detected	1300	Not Detected
1,1,2-Trichloroethane	280	Not Detected	1500	Not Detected
Tetrachloroethene	280	18000	1900	120000
Chlorobenzene	280	Not Detected	1300	Not Detected
Ethyl Benzene	280	9700	1200	42000
m,p-Xylene	280	45000	1200	190000
o-Xylene	280	18000	1200	76000
Styrene	280	Not Detected	1200	Not Detected
1,1,2,2-Tetrachloroethane	280	Not Detected	1900	Not Detected
Bromodichloromethane	280	Not Detected	1900	Not Detected
Dibromochloromethane	280	Not Detected	2400	Not Detected
Chloromethane	1100	Not Detected	2300	Not Detected
Acetone	1100	13000	2700	31000
Carbon Disulfide	1100	Not Detected	3500	Not Detected
rans-1,2-Dichloroethene	1100	Not Detected	4500	Not Detected
2-Butanone (Methyl Ethyl Ketone)	1100	6300	3300	19000
I-Methyl-2-pentanone	1100	2600 J /5	4600	11000 J
2-Hexanone	1100	Not Detected U J	4600	Not Detected U
Bromoform	1100	Not Detected	12000	Not Detected

Client Sample ID: 7 TOX 2 INF Dup

Lab ID#: 0605450A-07A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN


J = Estimated value.

J = Estimated value due to bias in the CCV.

UJ = Non-detected compound associated with low bias in the CCV

Container Type: 6 Liter Summa Canister

Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	81	70-130
Toluene-d8	86	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: 8 TOX 2 EFF

Lab ID#: 0605450A-08A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name	1053012		Date of Collection	
DR Factor	5-11-14	Amount	Date of Analysis Rpt. Limit	Amount
Compound	Rpt. Limit (ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chloride	5.6	34	14	86
Bromomethane	5.6	Not Detected	22	Not Detected
Chloroethane	5.6	20	15	52
1.1-Dichloroethene	5.6	150	22	580
Methylene Chloride	5.6	600	19	2100
1,1-Dichloroethane	5.6	97	22	390
cis-1,2-Dichloroethene	5.6	260	22	1000
Chloroform	5.6	57	27	280
1,1,1-Trichloroethane	5.6	670	30	3600
Carbon Tetrachloride	5.6	Not Detected	35	Not Detected
Benzene	5.6	620	18	2000
1.2-Dichloroethane	5.6	24	22	99
Trichloroethene	5.6	490	30	2600
1,2-Dichloropropane	5.6	6.8	26	31
cis-1,3-Dichloropropene	5.6	Not Detected	25	Not Detected
Toluene	5.6	2200	21	8200
trans-1,3-Dichloropropene	5.6	Not Detected	25	Not Detected
1,1,2-Trichloroethane	5.6	3.8 J /T	30	21 J
Tetrachloroethene	5.6	770	38	5200
Chlorobenzene	5.6	Not Detected	26	Not Detected
Ethyl Benzene	5.6	210	24	920
m,p-Xylene	5.6	880	24	3800
o-Xylene	5.6	340	24	1500
Styrene	5.6	36	24	150
1,1,2,2-Tetrachloroethane	5.6	Not Detected	38	Not Detected
Bromodichloromethane	5.6	Not Detected	37	Not Detected
Dibromochloromethane	5.6	Not Detected	47	Not Detected
Chloromethane	22	20 J /5	46	41 J
Acetone	22	690	53	1600
Carbon Disulfide	22	22	69	69
rans-1,2-Dichloroethene	22	26	88	100
2-Butanone (Methyl Ethyl Ketone)	22	260	65	770
I-Methyl-2-pentanone	22	61	91	250
2-Hexanone	22	Not Detected	91	Not Detected
Bromoform	22	Not Detected	230	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Surrogates %Recovery Limits

-6/22/0b

Client Sample ID: 8 TOX 2 EFF

Lab ID#: 0605450A-08A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name: 105	3012 Data of Go	Haction: 5/18/98
Bil: Factor Surrogates	11.: Date of An %Recovery	Method Limits
1,2-Dichloroethane-d4	109	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	99	70-130

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: 8 TOX 2 EFF Duplicate

Lab ID#: 0605450A-08AA

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name: Dit Factor:	E053015 51.4		Date of Collection Date of Analysis	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	5.6	34	14	88
Bromomethane	5.6	Not Detected	22	Not Detected
Chloroethane	5.6	14	15	38
1.1-Dichloroethene	5.6	150	22	580
Methylene Chloride	5.6	630	19	2200
1,1-Dichloroethane	5.6	100	22	400
cis-1,2-Dichloroethene	5.6	270	22	1000
Chloroform	5.6	56	27	270
1,1,1-Trichloroethane	5.6	660	30	3600
Carbon Tetrachloride	5.6	Not Detected	35	Not Detected
Benzene	5.6	580	18	1900
1,2-Dichloroethane	5.6	20	22	82
Trichloroethene	5.6	470	30	2500
1,2-Dichloropropane	5.6	6.6	26	30
cis-1,3-Dichloropropene	5.6	Not Detected	25	Not Detected
Toluene	5.6	2100	21	7800
trans-1,3-Dichloropropene	5.6	Not Detected	25	Not Detected
1,1,2-Trichloroethane	5.6	4.3 J	30	24 J
Tetrachloroethene	5.6	750	38	5100
Chlorobenzene	5.6	Not Detected	26	Not Detected
Ethyl Benzene	5.6	200	24	870
m,p-Xylene	5.6	840	24	3600
o-Xylene	5.6	330	24	1400
Styrene	5.6	34	24	150
1,1,2,2-Tetrachloroethane	5.6	Not Detected	38	Not Detected
Bromodichloromethane	5.6	Not Detected	37	Not Detected
Dibromochloromethane	5.6	Not Detected	47	Not Detected
Chloromethane	22	17 J	46	35 J
Acetone	22	700	53	1700
Carbon Disulfide	22	19J /5	69	60 J
rans-1,2-Dichloroethene	22	26	88	100
2-Butanone (Methyl Ethyl Ketone)	22	260	65	770
-Methyl-2-pentanone	22	60	91	250
2-Hexanone	22	Not Detected	91	Not Detected
Bromoform	22	Not Detected	230	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Surrogates %Recovery Limits

Client Sample ID: 8 TOX 2 EFF Duplicate

Lab ID#: 0605450A-08AA

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name 105 DIL Factor:	3015 Date of Co 111 Date of An	(lection: 5/18/06 alysis: 5/30/06 08:53 PM
Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	107	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: #1 OFFSITE ISVE

Lab ID#: 0605450B-01A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

Dif factor: 13		Analysis: 5/24/06/01:24 PM
	Rpt. Limit	Extraction 5/19/06 Amount
Compound	(ug)	(ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	Not Detected
2-Chlorophenol	5.0	Not Detected
1,3-Dichlorobenzene	1.0	1.3
1,4-Dichlorobenzene	1.0	4.4
1,2-Dichlorobenzene	1.0	37
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
Isophorone	1.0	20
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
bis(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
1,2,4-Trichlorobenzene	1.0	1.2
Naphthalene	1.0	36
4-Chloroaniline	10	Not Detected
Hexachlorobutadiene	1.0	3.1
4-Chloro-3-methylphenol	5.0	Not Detected
2-Methylnaphthalene	1.0	7.8
Hexachlorocyclopentadiene	20	2.6 J 15
2,4,6-Trichlorophenol	5.0	Not Detected
2,4,5-Trichlorophenol	5.0	Not Detected
2-Chloronaphthalene	1.0	Not Detected
2-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
Acenaphthylene	1.0	Not Detected
2,6-Dinitrotoluene	5.0	Not Detected
-Nitroaniline	10	Not Detected
cenaphthene	1.0	Not Detected
.4-Dinitrophenol	20	Not Detected
-Nitrophenol	20	Not Detected
,4-Dinitrotoluene	5.0	Not Detected
Dibenzofuran	1.0	Not Detected
liethylphthalate	5.0	1.4 J
luorene	1.0	Not Detected
-Chlorophenyl-phenyl Ether	1.0	Not Detected /

Page 8 of 29

6/22/0

Client Sample ID: #1 OFFSITE ISVE

Lab ID#: 0605450B-01A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

Compound 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenyl Ether Hexachlorobenzene		Analysis: \$2406 (1:24 PM) Extraction: 5/19/06 Amount
4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenyl Ether Hexachlorobenzene	Rpt. Limit (ug)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenyl Ether Hexachlorobenzene	10	(ug)
4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenyl Ether Hexachlorobenzene		Not Detected
N-Nitrosodiphenylamine 4-Bromophenyl-phenyl Ether Hexachlorobenzene	10	Not Detected
4-Bromophenyl-phenyl Ether Hexachlorobenzene	10	Not Detected
Hexachlorobenzene	1.0	Not Detected
	1.0	Not Detected
Pentachlorophenol	20	Not Detected
Phenanthrene	1.0	Not Detected
Anthracene	1.0	Not Detected
di-n-Butylphthalate	5.0	Not Detected
Fluoranthene	1.0	Not Detected
Pyrene	1.0	Not Detected
Butylbenzylphthalate	5.0	Not Detected
3,3'-Dichlorobenzidine	20	Not Detected
Chrysene	1.0	Not Detected
Benzo(a)anthracene	1.0	Not Detected
pis(2-Ethylhexyl)phthalate	5.0	9.3
Di-n-Octylphthalate	5.0	Not Detected
Benzo(b)fluoranthene	1.0	Not Detected
Benzo(k)fluoranthene	1.0	Not Detected
Benzo(a)pyrene	1.0	Not Detected
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected
Dibenz(a,h)anthracene	1.0	Not Detected
Benzo(g,h,i)perylene	1.0	Not Detected
J = Estimated value.		
Container Type: XAD Tube		229004
Surrogates	%Recovery	Method Limits
2-Fluorophenol	81	50-150
Phenol-d5	77	50-150
litrobenzene-d5		50-150
.4,6-Tribromophenol	71	
luorene-d10	71 70	50-150
Pyrene-d10		

0172/06

Client Sample ID: #2 SBPA (ONSITE) ISVE

Lab ID#: 0605450B-02A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

MODIFIED ETA METHOD TO-ISA GCMS FOLE SCAN		
File Name p05241 Oil Factor 1.0	\$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1000 \$1	Gollection: 5/16/06 Analysis: 5/24/06/01:54 PM
		Extraction: 5/19/86
	Rpt. Limit	Amount
Compound	(ug)	(ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	Not Detected
2-Chlorophenol	5.0	Not Detected
1,3-Dichlorobenzene	1.0	2.8
1,4-Dichlorobenzene	1.0	6.6
1,2-Dichlorobenzene	1.0	28
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
sophorone	1.0	2.5
-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
is(2-Chloroethoxy) Methane	1.0	Not Detected
,4-Dichlorophenol	5.0	Not Detected
,2,4-Trichlorobenzene	1.0	Not Detected
laphthalene	1.0	11
-Chloroaniline	10	Not Detected
lexachlorobutadiene	1.0	5.0
-Chioro-3-methylphenol	5.0	Not Detected
-Methylnaphthalene	1.0	7.1
lexachlorocyclopentadiene	20	Not Detected
,4,6-Trichlorophenol	5.0	Not Detected
,4,5-Trichlorophenol	5.0	Not Detected
-Chloronaphthalene	1.0	Not Detected
-Nitroaniline	10	Not Detected
imethylphthalate	5.0	Not Detected
cenaphthylene	1.0	Not Detected
6-Dinitrotoluene	5.0	Not Detected
Nitroaniline	10	Not Detected
cenaphthene	1.0	Not Detected
4-Dinitrophenol	20	Not Detected
Nitrophenol	20	Not Detected
4-Dinitrotoluene	5.0	Not Detected
benzofuran	1.0	Not Detected
ethylphthalate	5.0	0.62 J
uorene	1.0	Not Detected
Chlorophenyl-phenyl Ether	1.0	Not Detected

Page 10 of 29

Client Sample ID: #2 SBPA (ONSITE) ISVE

Lab ID#: 0605450B-02A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Hame p052 DB, Factor.		Collection: 5/18/08 Analysis: 5/24/08/01:58/PM
		Extraction: 5/19/06
Company	Rpt. Limit	Amount
Compound	(ug)	(ug)
4-Nitroaniline	10	Not Detected
4,6-Dinitro-2-methylphenol	10	Not Detected
N-Nitrosodiphenylamine	10	Not Detected
4-Bromophenyl-phenyl Ether	1.0	Not Detected
Hexachlorobenzene	1.0	Not Detected
Pentachlorophenol	20	Not Detected
Phenanthrene	1.0	Not Detected
Anthracene	1.0	Not Detected
di-n-Butylphthalate	5.0	Not Detected
Fluoranthene	1.0	Not Detected
Pyrene	1.0	Not Detected
Butylbenzylphthalate	5.0	Not Detected
3,3'-Dichlorobenzidine	20	Not Detected
Chrysene	1.0	Not Detected
Benzo(a)anthracene	1.0	Not Detected
pis(2-Ethylhexyl)phthalate	5.0	7.0
Di-n-Octylphthalate	5.0	Not Detected
Benzo(b)fluoranthene	1.0	Not Detected
Benzo(k)fluoranthene	1.0	Not Detected
Benzo(a)pyrene	1.0	Not Detected
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected
Dibenz(a,h)anthracene	1.0	Not Detected
Benzo(g,h,i)perylene	1.0	Not Detected
J = Estimated value.		
Container Type: XAD Tube		Method
Surrogates	%Recovery	Limits
2-Fluorophenol	80	50-150
Phenol-d5	74	50-150
litrobenzene-d5	73	50-150
,4,6-Tribromophenol	64	50-150
luorene-d10	73	60-120
Pyrene-d10	74	60-120

Client Sample ID: #2 SBPA (ONSITE) ISVE Duplicate

Lab ID#: 0605450B-02AA

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

FileName pf52411	Date of	Collection 5/18/06
Dil Factor: £.00	Date of	amalysis (\$7240) (\$226.9M.
	Rpt. Limit	Extraction: 5:19/GB Amount
Compound	(ug)	(ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	Not Detected
2-Chlorophenol	5.0	Not Detected
1,3-Dichlorobenzene	1.0	2.8
1,4-Dichlorobenzene	1.0	6.6
1,2-Dichlorobenzene	1.0	29
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
Isophorone	1.0	2.4
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
bis(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
1,2,4-Trichlorobenzene	1.0	Not Detected
Naphthalene	1.0	11
4-Chloroaniline	10	Not Detected
Hexachlorobutadiene	1.0	5.3
4-Chloro-3-methylphenol	5.0	Not Detected
2-Methylnaphthalene	1.0	7.4
Hexachlorocyclopentadiene	20	Not Detected
2,4,6-Trichlorophenol	5.0	Not Detected
2,4,5-Trichlorophenol	5.0	Not Detected
2-Chloronaphthalene	1.0	Not Detected
2-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
Acenaphthylene	1.0	Not Detected
2,6-Dinitrotoluene	5.0	Not Detected
-Nitroaniline	10	Not Detected
Acenaphthene	1.0	Not Detected
,4-Dinitrophenol	20	Not Detected
-Nitrophenol	20	Not Detected
,4-Dinitrotoluene	5.0	Not Detected
Dibenzofuran	1.0	Not Detected
Diethylphthalate	5.0	0.68 J /
luorene	1.0	Not Detected
-Chlorophenyl-phenyl Ether	1.0	Not Detected

Page 12 of 29

Client Sample ID: #2 SBPA (ONSITE) ISVE Duplicate

Lab ID#: 0605450B-02AA

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

DIR Factor:		Analysis: 5/74/0 6/02:24 PM Extraction: 5/19/06
	Rpt. Limit	Amount
Compound	(ug)	(ug)
4-Nitroaniline	10	Not Detected
4,6-Dinitro-2-methylphenol	10	Not Detected
N-Nitrosodiphenylamine	10	Not Detected
4-Bromophenyl-phenyl Ether	1.0	Not Detected
Hexachlorobenzene	1.0	Not Detected
Pentachlorophenol	20	Not Detected
Phenanthrene	1.0	Not Detected
Anthracene	1.0	Not Detected
di-n-Butylphthalate	5.0	Not Detected
Fluoranthene	1.0	Not Detected
Pyrene	1.0	Not Detected
Butylbenzylphthalate	5.0	Not Detected
3,3'-Dichlorobenzidine	20	Not Detected
Chrysene	1.0	Not Detected
Benzo(a)anthracene	1.0	Not Detected
pis(2-Ethylhexyl)phthalate	5.0	7.0
Di-n-Octylphthalate	5.0	Not Detected
Benzo(b)fluoranthene	1.0	Not Detected
Benzo(k)fluoranthene	1.0	Not Detected
Benzo(a)pyrene	1.0	Not Detected
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected
Dibenz(a,h)anthracene	1.0	Not Detected
Benzo(g,h,i)perylene	1.0	Not Detected
I = Estimated value.		
Container Type: XAD Tube		Method
Surrogates	%Recovery	Limits
2-Fluorophenol	78	50-150
Phenol-d5	76	50-150
litrobenzene-d5	73	50-150
,4,6-Tribromophenol	67	50-150
luorene-d10	76	60-120

Client Sample ID: #3 TOX 1 INF

Lab ID#: 0605450B-03A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

DH, Factor: 1.00		Collection: 5/16/06 Analysis: 5/24/16/02/54 PM:	
		Extraction: 5/19/66	
Compound	Rpt. Limit (ug)	Amount (ug)	
Phenol	5.0	Not Detected	
bis(2-Chloroethyl) Ether	1.0	Not Detected	
2-Chlorophenol	5.0	Not Detected	
1,3-Dichlorobenzene	1.0	1.9	
1,4-Dichlorobenzene	1.0	4.7	
1,2-Dichlorobenzene	1.0	20	
2-Methylphenol (o-Cresol)	5.0	Not Detected	
N-Nitroso-di-n-propylamine	1.0	Not Detected	
4-Methylphenol/3-Methylphenol	5.0	Not Detected	
Hexachloroethane	1.0	Not Detected	
Nitrobenzene	1.0	Not Detected	
sophorone	1.0	1.7	
2-Nitrophenol	5.0	Not Detected	
2,4-Dimethylphenol	5.0	Not Detected	
ois(2-Chloroethoxy) Methane	1.0	Not Detected	
2,4-Dichlorophenol	5.0	Not Detected	
1,2,4-Trichlorobenzene	1.0	Not Detected	
Naphthalene	1.0	7.3	
1-Chloroaniline	10	Not Detected	
dexachlorobutadiene	1.0	3.7	
-Chloro-3-methylphenol	5.0	Not Detected	
2-Methylnaphthalene	1.0	5.0	
lexachlorocyclopentadiene	20	Not Detected	
2,4,6-Trichlorophenol	5.0	Not Detected	
.4,5-Trichlorophenol	5.0	Not Detected	
-Chloronaphthalene	1.0	Not Detected	
-Nitroaniline	10	Not Detected	
Dimethylphthalate	5.0	Not Detected	
cenaphthylene	1.0	Not Detected	
,6-Dinitrotoluene	5.0	Not Detected	
-Nitroaniline	10	Not Detected	
cenaphthene	1.0	Not Detected	
,4-Dinitrophenol	20	Not Detected	
-Nitrophenol	20	Not Detected	
,4-Dinitrotoluene	5.0	Not Detected	
ibenzofuran	1.0	Not Detected	
iethylphthalate	5.0	0.76 J	
luorene	1.0	1)	
-Chlorophenyl-phenyl Ether	1.0	Not Detected Not Detected	

Page 14 of 29

075

Pyrene-d10

Client Sample ID: #3 TOX 1 INF Lab ID#: 0605450B-03A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Name ±052		Collection: 5/18/08
Olf, Factor:		Analysis > 5/24/06 02:54 PM Extractions 5/19/06
	Rpt. Limit	Amount
Compound	(ug)	(ug)
4-Nitroanlline	10	Not Detected
1,6-Dinitro-2-methylphenol	10	Not Detected
N-Nitrosodiphenylamine	10	Not Detected
4-Bromophenyl-phenyl Ether	1.0	Not Detected
Hexachlorobenzene	1.0	Not Detected
Pentachlorophenol	20	Not Detected
Phenanthrene	1.0	Not Detected
Anthracene	1.0	Not Detected
di-n-Butylphthalate	5.0	Not Detected
Fluoranthene	1.0	Not Detected
Pyrene	1.0	Not Detected,
Butylbenzylphthalate	5.0	0.62 J
3,3'-Dichlorobenzidine	20	Not Detected
Chrysene	1.0	Not Detected
Benzo(a)anthracene	1.0	Not Detected
ois(2-Ethylhexyl)phthalate	5.0	1.0 J
Di-n-Octylphthalate	5.0	Not Detected
Benzo(b)fluoranthene	1.0	Not Detected
Benzo(k)fluoranthene	1.0	Not Detected
Benzo(a)pyrene	1.0	Not Detected
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected
Dibenz(a,h)anthracene	1.0	Not Detected
Benzo(g,h,i)perylene	1.0	Not Detected
I = Estimated value.		
Container Type: XAD Tube		
		Method
Surrogates	%Recovery	Limits
-Fluorophenol	74	50-150
Phenol-d5	68	50-150
Nitrobenzene-d5	66	50-150
2,4,6-Tribromophenol	55	50-150
fluorene-d10	64	60-120

075 106

60-120

66

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #4 TOX 1 INF DUP

Lab ID#: 0605450B-04A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

	Collection: 5/18/96
	Analysia: 5/24/08/03:24 PM Extraction: 5/19/08
Rpt. Limit	Amount
(ug)	(ug)
5.0	Not Detected
1.0	Not Detected
5.0	Not Detected
1.0	2.3
1.0	5.5
1.0	24
5.0	Not Detected
1.0	Not Detected
5.0	Not Detected
1.0	Not Detected
1.0	Not Detected
1.0	1.7
5.0	Not Detected
5.0	Not Detected
1.0	Not Detected
5.0	Not Detected
1.0	Not Detected
1.0	9.4
10	Not Detected
1.0	4.0
5.0	Not Detected
1.0	5.5
20	Not Detected
5.0	Not Detected
5.0	Not Detected
1.0	Not Detected
10	Not Detected
5.0	Not Detected
1.0	Not Detected
5.0	Not Detected
10	Not Detected
1.0	Not Detected
20	Not Detected
20	Not Detected
5.0	Not Detected
1.0	Not Detected
5.0	0.65 J
1.0	
1.0	Not Detected
	Rpt. Limit (ug) 5.0 1.0 5.0 1.0 1.0 1.0 1.0 5.0 1.0 1.0 5.0 1.0 1.0 5.0 1.0 1.0 5.0 1.0 5.0 1.0 1.0 5.0 1.0 1.0 5.0 1.0 1.0 1.0 5.0 1.0 1.0 1.0 5.0 1.0 1.0 5.0 1.0 1.0 5.0 1.0 1.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0 1.0 5.0 5.0 1.0 5.0 5.0 1.0 5.0 5.0 1.0 5.0 5.0 1.0 5.0 5.0 1.0 5.0 5.0 1.0 5.0 5.0 1.0 5.0 5.0 1.0 5.0 5.0 1.0 5.0 5.0 1.0 5.0 5.0 5.0

Client Sample ID: #4 TOX 1 INF DUP

Lab ID#: 0605450B-04A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Hame: p0524 DR Festor: 1	00 Date of	Collection: 5,18,08 Analysis: 5/24/08 (13:24 PM	
		Estraction: \$1908	
Compound	Rpt. Limit (ug)	Amount (ug)	
4-Nitroaniline	10	Not Detected	
4,6-Dinitro-2-methylphenol	10	Not Detected	
N-Nitrosodiphenylamine	10	Not Detected	
4-Bromophenyl-phenyl Ether	1.0	Not Detected	
Hexachlorobenzene	1.0	Not Detected	
Pentachlorophenol	20	Not Detected	
Phenanthrene	1.0	Not Detected	
Anthracene	1.0	Not Detected	
di-n-Butylphthalate	5.0	Not Detected	
Fluoranthene	1.0	Not Detected	
Pyrene	1.0	Not Detected	
Butylbenzylphthalate	5.0	Not Detected	
3,3'-Dichlorobenzidine	20	Not Detected	
Chrysene	1.0	Not Detected	
Benzo(a)anthracene	1.0	Not Detected	
ois(2-Ethylhexyl)phthalate	5.0	10	
Di-n-Octylphthalate	5.0	Not Detected	
Benzo(b)fluoranthene	1.0	Not Detected	
Benzo(k)fluoranthene	1.0	Not Detected	
Benzo(a)pyrene	1.0	Not Detected	
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected	
Dibenz(a,h)anthracene	1.0	Not Detected	
Benzo(g,h,i)perylene	1.0	Not Detected	
= Estimated value.			
Container Type: XAD Tube		Method	
Surrogates	%Recovery	Limits	
-Fluorophenol	76	50-150	
Phenol-d5	72	50-150	
litrobenzene-d5	73	50-150	
,4,6-Tribromophenol	67	50-150	
Juorene-d10	73	60-120	

Client Sample ID: #5 TOX 1 EFF Lab ID#: 0605450B-05A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

Dit Facine 1 0		Analysis: 5/24/06 0/254 PM Extraction: 5/19/06
	Rpt. Limit	Amount
Compound	(ug)	(ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	Not Detecte
2-Chlorophenol	5.0	Not Detecte
1,3-Dichlorobenzene	1.0	Not Detected
1,4-Dichlorobenzene	1.0	Not Detected
1,2-Dichlorobenzene	1.0	Not Detected
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
Isophorone	1.0	Not Detected
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
bis(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
1,2,4-Trichlorobenzene	1.0	Not Detected
Naphthalene	1.0	Not Detected
4-Chloroaniline	10	Not Detected
Hexachlorobutadiene	1.0	Not Detected
4-Chloro-3-methylphenol	5.0	Not Detected
2-Methylnaphthalene	1.0	Not Detected
Hexachlorocyclopentadiene	20	Not Detected
2,4,6-Trichlorophenol	5.0	Not Detected
2,4,5-Trichlorophenol	5.0	Not Detected
2-Chloronaphthalene	1.0	Not Detected
2-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
Acenaphthylene	1.0	Not Detected
2,6-Dinitrotoluene	5.0	Not Detected
3-Nitroanillne	10	Not Detected
Acenaphthene	1.0	Not Detected
2,4-Dinitrophenol	20	Not Detected
-Nitrophenol	20	Not Detected
,4-Dinitrotoluene	5.0	Not Detected
Dibenzofuran	1.0	Not Detected
Diethylphthalate	5.0	0.56 J
luorene	1.0	Not Detected
-Chlorophenyl-phenyl Ether	1.0	Not Detected
		THUI DETECTED

Page 18 of 29

Pyrene-d10

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #5 TOX 1 EFF Lab ID#: 0605450B-05A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Name: p0	52414 Date of	Collection: 5/18/06	
Bil Factor	100 Date of	Analysis: 5/24/08 03/54 PM Extraction: 5/19/06	
	Rpt. Limit	Amount	
Compound	(ug)	(ug)	
4-Nitroaniline	10	Not Detected	
4,6-Dinitro-2-methylphenol	10	Not Detected	
N-Nitrosodiphenylamine	10	Not Detected	
4-Bromophenyl-phenyl Ether	1.0	Not Detected	
Hexachlorobenzene	1.0	Not Detected	
Pentachlorophenol	20	Not Detected	
Phenanthrene	1.0	Not Detected	
Anthracene	1.0	Not Detected	
di-n-Butylphthalate	5.0	Not Detected	
Fluoranthene	1.0	Not Detected	
Pyrene	1.0	Not Detected	
Butylbenzylphthalate	5.0	Not Detected	
3,3'-Dichlorobenzidine	20	Not Detected	
Chrysene	1.0	Not Detected	
Benzo(a)anthracene	1.0	Not Detected	
bis(2-Ethylhexyl)phthalate	5.0	1.8 J	
Di-n-Octylphthalate	5.0	Not Detected	
Benzo(b)fluoranthene	1.0	Not Detected	
Benzo(k)fluoranthene	1.0	Not Detected	
Benzo(a)pyrene	1.0	Not Detected	
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected	
Dibenz(a,h)anthracene	1.0	Not Detected	
Benzo(g,h,i)perylene	1.0	Not Detected	
= Estimated value.			
Container Type: XAD Tube		Mathad	
Surrogates	%Recovery	Method Limits	
2-Fluorophenol	71	50-150	
Phenol-d5	78	50-150	
litrobenzene-d5	70	50-150	
,4,6-Tribromophenol	63	50-150	
luorene-d10	70	60-120	
140	75	60 120	

60-120

75

Client Sample ID: #6 TOX 2 INF

Lab ID#: 0605450B-06A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Name: pQ5241		Collection: 5/18/06
Bit Factor: 1.0		Anarysia: 5/24/08 04:24 PM Extraction: 5/19/06
	Rpt. Limit	Amount
Compound	(ug)	(ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	Not Detected
2-Chlorophenol	5.0	Not Detected ,
1,3-Dichlorobenzene	1.0	0.34 J /7
1,4-Dichlorobenzene	1.0	1.2
1,2-Dichlorobenzene	1.0	9.8
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
Isophorone	1.0	2.8
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
bis(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
1,2,4-Trichlorobenzene	1.0	Not Detected
Naphthalene	1.0	3.4
4-Chloroaniline	10	Not Detected
Hexachlorobutadiene	1.0	0.57 J /
4-Chloro-3-methylphenol	5.0	Not Detected
2-Methylnaphthalene	1.0	0.61 J /5
Hexachlorocyclopentadiene	20	Not Detected
2,4,6-Trichlorophenol	5.0	Not Detected
2,4,5-Trichlorophenol	5.0	Not Detected
2-Chloronaphthalene	1.0	Not Detected
2-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
Acenaphthylene	1.0	Not Detected
2,6-Dinitrotoluene	5.0	Not Detected
3-Nitroaniline	10	Not Detected
Acenaphthene	1.0	Not Detected
2,4-Dinitrophenol	20	Not Detected
4-Nitrophenol	20	Not Detected
2,4-Dinitrotoluene	5.0	Not Detected
Dibenzofuran	1.0	Not Detected
Diethylphthalate	5.0	0.78 J
Fluorene	1.0	Not Detected
I-Chlorophenyl-phenyl Ether	1.0	Not Detected

Page 20 of 29

065

Client Sample ID: #6 TOX 2 INF

Lab ID#: 0605450B-06A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Name. 6052		Collection: 5/18/88
Dil Factori 1		Analysis 5/24/05/04/ <u>74</u> PM Extraction: 5/19/06
	Rpt. Limit	Amount
Compound	(ug)	(ug)
4-Nitroaniline	10	Not Detected
4,6-Dinitro-2-methylphenol	10	Not Detected
N-Nitrosodiphenylamine	10	Not Detected
4-Bromophenyl-phenyl Ether	1.0	Not Detected
Hexachlorobenzene	1.0	Not Detected
Pentachlorophenol	20	Not Detected
Phenanthrene	1.0	Not Detected
Anthracene	1.0	Not Detected
di-n-Butylphthalate	5.0	Not Detected
Fluoranthene	1.0	Not Detected
Pyrene	1.0	Not Detected
Butylbenzylphthalate	5.0	Not Detected
3,3'-Dichlorobenzidine	20	Not Detected
Chrysene	1.0	Not Detected
Benzo(a)anthracene	1.0	Not Detected
ois(2-Ethylhexyl)phthalate	5.0	11
Di-n-Octylphthalate	5.0	Not Detected
Benzo(b)fluoranthene	1.0	Not Detected
Benzo(k)fluoranthene	1.0	Not Detected
Benzo(a)pyrene	1.0	Not Detected
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected
Dibenz(a,h)anthracene	1.0	Not Detected
Benzo(g,h,i)perylene	1.0	Not Detected
J = Estimated value.		
Container Type: XAD Tube		Method
Surrogates	%Recovery	Limits
2-Fluorophenol	74	50-150
Phenol-d5	75	50-150
Vitrobenzene-d5	71	50-150
2,4,6-Tribromophenol	63	50-150
Fluorene-d10	72	60-120
Pyrene-d10	71	60-120

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #7 TOX 2 INF DUP

Lab ID#: 0605450B-07A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

######################################	6 Date of O Cater of	Collection : 5/16/06 Analysis : 5/24/06/04/54/PM : 57
	Date-of	Ethaction: 5/19/06
	Rpt. Limit	Amount
Compound	(ug)	(ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	Not Detected
2-Chlorophenol	5.0	Not Detected,
1,3-Dichlorobenzene	1.0	0.35 J /7
1,4-Dichlorobenzene	1.0	1.4
1,2-Dichlorobenzene	1.0	11
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
Isophorone	1.0	3.1
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
bis(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
1,2,4-Trichlorobenzene	1.0	Not Detected
Naphthalene	1.0	4.1
4-Chloroaniline	10	Not Detected
Hexachlorobutadiene	1.0	0.67 J /
4-Chloro-3-methylphenol	5.0	Not Detected
2-Methylnaphthalene	1.0	0.61 J /
Hexachlorocyclopentadiene	20	Not Detected
2,4,6-Trichlorophenol	5.0	Not Detected
2,4,5-Trichlorophenol	5.0	Not Detected
2-Chloronaphthalene	1.0	Not Detected
2-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
Acenaphthylene	1.0	Not Detected
2,6-Dinitrotoluene	5.0	Not Detected
3-Nitroaniline	10	Not Detected
Acenaphthene	1.0	Not Detected
2,4-Dinitrophenol	20	Not Detected
4-Nitrophenol	20	Not Detected
2,4-Dinitrotoluene	5.0	Not Detected
Dibenzofuran	1.0	
Diethylphthalate	5.0	Not Detected
Fluorene		0.80 J /
4-Chlorophenyl-phenyl Ether	1.0	Not Detected
Onior opilenyi-pilenyi culei	1.0	Not Detected

Page 22 of 29

Client Sample ID: #7 TOX 2 INF DUP

Lab ID#: 0605450B-07A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File-Name: p052	etis Date of	Collection: 5/18/05
DIJ Factor 1	.00 Cate of	Analysis, 5/20/06/04/54 PM
	Rpt. Limit	Extraction: \$49.09 Amount
Compound	(ug)	(ug)
4-Nitroaniline	10	Not Detected
4,6-Dinitro-2-methylphenol	10	Not Detected
N-Nitrosodiphenylamine	10	Not Detected
4-Bromophenyl-phenyl Ether	1.0	Not Detected
Hexachlorobenzene	1.0	Not Detected
Pentachlorophenol	20	Not Detected
Phenanthrene	1.0	Not Detected
Anthracene	1.0	Not Detected
di-n-Butylphthalate	5.0	Not Detected
Fluoranthene	1.0	Not Detected
Pyrene	1.0	Not Detected
Butylbenzylphthalate	5.0	Not Detected
3,3'-Dichlorobenzidine	20	Not Detected
Chrysene	1.0	Not Detected
Benzo(a)anthracene	1.0	Not Detected
ois(2-Ethylhexyl)phthalate	5.0	5.2
Di-n-Octylphthalate	5.0	Not Detected
Benzo(b)fluoranthene	1.0	Not Detected
Benzo(k)fluoranthene	1.0	Not Detected
Benzo(a)pyrene	1.0	Not Detected
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected
Dibenz(a,h)anthracene	1.0	Not Detected
Benzo(g,h,i)perylene	1.0	Not Detected
J = Estimated value.		
Container Type: XAD Tube		Made
Surrogates	%Recovery	Method Limits
2-Fluorophenol	73	50-150
Phenol-d5	76	50-150
Vitrobenzene-d5	70	50-150
,4,6-Tribromophenol	60	50-150
Nuorene-d10	70	60-120
Pyrene-d10	73	60-120
Jidiid a id		

Client Sample ID: #8 TOX 2 EFF

Lab ID#: 0605450B-08A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Harms p.052417 Dil. Factor 1.00	D Rpt. Limit	ate of Collection: 5/18/06 ate of Analysis: 5/24/06/05:24 PM ate of Extraction: 5/19/06
	Rpt. Limit	ate of Extraction 5719/06
	Rpt. Limit	
		Amount
Compound	(ug)	(ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	Not Detected
2-Chlorophenol	5.0	Not Detected
1,3-Dichlorobenzene	1.0	Not Detected
1,4-Dichlorobenzene	1.0	Not Detected
1,2-Dichlorobenzene	1.0	1.2
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
sophorone	1.0	Not Detected
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
ois(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
,2,4-Trichlorobenzene	1.0	Not Detected
laphthalene	1.0	1.4
-Chloroaniline	10	Not Detected
fexachlorobutadiene	1.0	Not Detected
-Chloro-3-methylphenol	5.0	Not Detected
-Methylnaphthalene	1.0	Not Detected
lexachlorocyclopentadiene	20	Not Detected
,4,6-Trichlorophenol	5.0	Not Detected
,4,5-Trichlorophenol	5.0	Not Detected
-Chloronaphthalene	1.0	Not Detected
-Nitroaniline	10	Not Detected
imethylphthalate	5.0	Not Detected
cenaphthylene	1.0	Not Detected
,6-Dinitrotoluene	5.0	Not Detected
Nitroaniline	10	Not Detected
cenaphthene	1.0	Not Detected
4-Dinitrophenol	20	Not Detected
Nitrophenol	20	Not Detected
4-Dinitrotoluene	5.0	Not Detected
ibenzofuran	1.0	Not Detected
iethylphthalate	5.0	0.79 J
uorene	1.0	Not Detected
Chlorophenyl-phenyl Ether	1.0	Not Detected

Page 24 of 29

089 106

Client Sample ID: #8 TOX 2 EFF Lab ID#: 0605450B-08A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

Name 0852417 Date		Collection: 5/18/06
DR Factors		Analysis: 5/24/06/05/24 PM Extraction: 5/19/06
	Rpt. Limit	Amount
Compound	(ug)	(ug)
4-Nitroaniline	10	Not Detected
4,6-Dinitro-2-methylphenol	10	Not Detected
N-Nitrosodiphenylamine	10	Not Detected
4-Bromophenyl-phenyl Ether	1.0	Not Detected
Hexachlorobenzene	1.0	Not Detected
Pentachlorophenol	20	Not Detected
Phenanthrene	1.0	Not Detected
Anthracene	1.0	Not Detected
di-n-Butylphthalate	5.0	Not Detected
Fluoranthene	1.0	Not Detected
Pyrene	1.0	Not Detected
Butylbenzylphthalate	5.0	Not Detected
3,3'-Dichlorobenzidine	20	Not Detected
Chrysene	1.0	Not Detected
Benzo(a)anthracene	1.0	Not Detected
ois(2-Ethylhexyl)phthalate	5.0	3.0 J
Di-n-Octylphthalate	5.0	Not Detected
Benzo(b)fluoranthene	1.0	Not Detected
Benzo(k)fluoranthene	1.0	Not Detected
Benzo(a)pyrene	1.0	Not Detected
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected
Dibenz(a,h)anthracene	1.0	Not Detected
Benzo(g,h,i)perylene	1.0	Not Detected
J = Estimated value.		
Container Type: XAD Tube		
		Method
Surrogates	%Recovery	Limits
2-Fluorophenol	76	50-150
Phenol-d5	79	50-150
Nitrobenzene-d5	74	50-150
2,4,6-Tribromophenol	67	50-150
Fluorene-d10	69	60-120
Pyrene-d10	70	60-120

0/22/06

June 15, 2006 Off-Gas Sample Laboratory Results

Client Sample ID: #1 OFFSITE ISVE Lab ID#: 0606371A-01A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name Dil Fanton	f062612		Date of Collection Date of Amalysis:	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	180	150 J 15	460	380 J
Bromomethane	180	Not Detected	700	Not Detected
Chloroethane	180	Not Detected	480	Not Detected
1.1-Dichloroethene	180	84 J /	720	330 J
Methylene Chloride	180	19000	630	66000
1,1-Dichloroethane	180	2700	730	11000
cis-1,2-Dichloroethene	180	1700	720	6900
Chloroform	180	1800	890	8700
1,1,1-Trichloroethane	180	22000	990	120000
Carbon Tetrachloride	180	Not Detected	1100	Not Detected
Benzene	180	12000	580	38000
1,2-Dichloroethane	180	760	730	3100
Trichloroethene	180	15000	980	78000
1,2-Dichloropropane	180	180	840	850
cis-1,3-Dichloropropene	180	Not Detected	820	Not Detected
Toluene	180	64000	680	240000
trans-1,3-Dichloropropene	180	Not Detected	820	Not Detected
1,1,2-Trichloroethane	180	140 J /5	990	770 J
Tetrachloroethene	180	18000	1200	120000
Chlorobenzene	180	Not Detected	840	Not Detected
Ethyl Benzene	180	7900	790	34000
m,p-Xylene	180	34000	790	150000
o-Xylene	180	12000	790	52000
Styrene	180	Not Detected	770	Not Detected
1,1,2,2-Tetrachloroethane	180	Not Detected	1200	Not Detected
Bromodichloromethane	180	Not Detected	1200	Not Detected
Dibromochloromethane	180	Not Detected	1500	Not Detected
Chloromethane	730	Not Detected	1500	Not Detected
Acetone	730	9700	1700	23000
Carbon Disulfide	730	300 J /3	2300	950 J
rans-1,2-Dichloroethene	730	Not Detected	2900	Not Detected
2-Butanone (Methyl Ethyl Ketone)	730	5900	2100	17000
1-Methyl-2-pentanone	730	3100	3000	13000
2-Hexanone	730	Not Detected	3000	Not Detected
Bromoform	730	Not Detected	7500	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Surrogates %Recovery Limits

-127/06 B

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #1 OFFSITE ISVE

Lab ID#: 0606371A-01A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name: :: ::::::::::::::::::::::::::::::::	52612 Date of Co	Hection: 8/15/06
Cut: Factor: Surrogates	363 Date of An	Method Limits
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	87	70-130
4-Bromofluorobenzene	113	70-130

7/27/06

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #1 OFFSITE ISVE Duplicate

Lab ID#: 0606371A-01AA

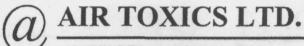
MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name	1962611		Date of Collection	6/15/06
DR Factors	Rpt. Limit	Amount	Pote of Analysis. Rpt. Limit	6/26/06 06 53 PM Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chloride	360	130 J	930	330 J
Bromomethane	360	Not Detected	1400	Not Detected
Chloroethane	360	Not Detected	960	Not Detected
1,1-Dichloroethene	360	Not Detected	1400	Not Detected
Methylene Chloride	360	17000	1200	60000
1,1-Dichloroethane	360	2500	1500	10000
cis-1,2-Dichloroethene	360	1500	1400	6000
Chloroform	360	1600	1800	7900
1,1,1-Trichloroethane	360	20000	2000	110000
Carbon Tetrachloride	360	Not Detected	2300	Not Detected
Benzene	360	10000	1200	33000
1,2-Dichloroethane	360	660	1500	2700
Trichloroethene	360	13000	1900	69000
1,2-Dichloropropane	360	170 J /	1700	780 J
cis-1,3-Dichloropropene	360	Not Detected	1600	Not Detected
Toluene	360	58000	1400	220000
rans-1,3-Dichloropropene	360	Not Detected	1600	Not Detected
1,1,2-Trichloroethane	360	120 J /1	2000	660 J
Tetrachloroethene	360	15000	2400	100000
Chlorobenzene	360	Not Detected	1700	Not Detected
Ethyl Benzene	360	6600	1600	29000
m,p-Xylene	360	28000	1600	120000
o-Xylene	360	9700	1600	42000
Styrene	360	Not Detected	1500	Not Detected
1,1,2,2-Tetrachloroethane	360	Not Detected	2500	Not Detected
Bromodichloromethane	360	Not Detected	2400	Not Detected
Dibromochloromethane	360	Not Detected	3100	Not Detected
Chloromethane	1400	Not Detected	3000	Not Detected
Acetone	1400	8600	3400	20000
Carbon Disulfide	1400	320 J	4500	1000 J
rans-1,2-Dichloroethene	1400	Not Detected	5700	Not Detected
2-Butanone (Methyl Ethyl Ketone)	1400	5000	4300	15000
1-Methyl-2-pentanone	1400	2400	5900	9900
2-Hexanone	1400	Not Detected	5900	Not Detected
Bromoform	1400	Not Detected	15000	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Surrogates %Recovery Limits


AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #1 OFFSITE ISVE Duplicate

Lab ID#: 0606371A-01AA

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

itt Date of Go	Rections: 8/15/96
25 Date of An	Method Limits
98	70-130
89	70-130
108	70-130
	98 89

Client Sample ID: #2 SBPA (ONSITE) ISVE

Lab ID#: 0606371A-02A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name:	1062613		Date of Collection	
Dit Factor: Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	280	1400	710	3600
Bromomethane	280	Not Detected	1100	Not Detected
Chloroethane	280	380	730	1000
1,1-Dichloroethene	280	180 J 1T	1100	720 J
Methylene Chloride	280	8300	960	29000
1,1-Dichloroethane	280	3400	1100	14000
cis-1,2-Dichloroethene	280	21000	1100	85000
Chloroform	280	10000	1400	50000
1,1,1-Trichloroethane	280	33000	1500	180000
Carbon Tetrachloride	280	Not Detected	1700	Not Detected
Benzene	280	6100	890	20000
1,2-Dichloroethane	280	520	1100	2100
Trichloroethene	280	30000	1500	160000
1,2-Dichloropropane	280	570	1300	2600
cis-1,3-Dichloropropene	280	Not Detected	1300	Not Detected
Toluene	280	64000	1000	240000
trans-1,3-Dichloropropene	280	Not Detected	1300	Not Detected
1,1,2-Trichloroethane	280	Not Detected	1500	Not Detected
Tetrachloroethene	280	56000	1900	380000
Chlorobenzene	280	Not Detected	1300	Not Detected
Ethyl Benzene	280	11000	1200	49000
n,p-Xylene	280	51000	1200	220000
o-Xylene	280	23000	1200	100000
Styrene	280	Not Detected	1200	Not Detected
1,1,2,2-Tetrachloroethane	280	Not Detected	1900	Not Detected
Bromodichloromethane	280	Not Detected	1900	Not Detected
Dibromochloromethane	280	Not Detected	2400	Not Detected
Chloromethane	1100	Not Detected	2300	Not Detected
Acetone	1100	3600	2600	8600
Carbon Disulfide	1100	360 J /5	3500	1100 J
rans-1,2-Dichloroethene	1100	150 J /	4400	610 J
-Butanone (Methyl Ethyl Ketone)	1100	1200	3300	3500
I-Methyl-2-pentanone	1100	1700	4600	7000
2-Hexanone	1100	Not Detected	4600	Not Detected
Bromoform	1100	Not Detected	11000	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Surrogates %Recovery Limits

1/27/06

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #2 SBPA (ONSITE) ISVE

Lab ID#: 0606371A-02A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name D6	2613 Date of Co	Hection: 8/45/06
DH Factor Surrogates	%Recovery	alysis 5/25/06 95:20 PM Method Limits
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	89	70-130
4-Bromofluorobenzene	107	70-130

7/27/06

Client Sample ID: #3 TOX 1 INF Lab ID#: 0606371A-03A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name: Dit. Patter	£062614 576		Date of Collection Date of Analysis	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chloride	290	1400	740	3700
Bromomethane	290	Not Detected	1100	Not Detected
Chloroethane	290	370	760	970
1,1-Dichloroethene	290	180 J /	1100	700 J
Methylene Chloride	290	8000	1000	28000
1,1-Dichloroethane	290	3400	1200	14000
cis-1,2-Dichloroethene	290	21000	1100	84000
Chloroform	290	10000	1400	49000
1,1,1-Trichloroethane	290	32000	1600	180000
Carbon Tetrachloride	290	Not Detected	1800	Not Detected
Benzene	290	6100	920	19000
1,2-Dichloroethane	290	540	1200	2200
Trichloroethene	290	32000	1500	170000
1,2-Dichloropropane	290	600	1300	2800
cis-1,3-Dichloropropene	290	Not Detected	1300	Not Detected
Toluene	290	67000	1100	250000
trans-1,3-Dichloropropene	290	Not Detected	1300	Not Detected
1,1,2-Trichloroethane	290	Not Detected	1600	Not Detected
Tetrachloroethene	290	59000	2000	400000
Chlorobenzene	290	Not Detected	1300	Not Detected
Ethyl Benzene	290	12000	1200	53000
n,p-Xylene	290	55000	1200	240000
o-Xylene	290	25000	1200	110000
Styrene	290	Not Detected	1200	Not Detected
1,1,2,2-Tetrachloroethane	290	Not Detected	2000	Not Detected
Bromodichloromethane	290	Not Detected	1900	Not Detected
Dibromochloromethane	290	Not Detected	2400	Not Detected
Chloromethane	1200	Not Detected	2400	Not Detected
Acetone	1200	2500	2700	6000
Carbon Disulfide	1200	370 J /5	3600	1200 J
rans-1,2-Dichloroethene	1200	160 J / J	4600	620 J
2-Butanone (Methyl Ethyl Ketone)	1200	880 J	3400	2600 J
I-Methyl-2-pentanone	1200	1400	4700	5700
2-Hexanone	1200	Not Detected	4700	Not Detected
Bromoform	1200	Not Detected	12000	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Method Limits %Recovery Surrogates

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #3 TOX 1 INF

Lab ID#: 0606371A-03A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name 10	62614 Date of Co	liection: 6/13/08
Dit: Factor Surrogates	%Recovery	atysis: 6/26/06/09:04 PM Method Limits
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	90	70-130
4-Bromofluorobenzene	108	70-130

Client Sample ID: #4 TOX 1 INF Dup

Lab ID#: 0606371A-04A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

Fin Name Oil Factor	1062819 578		Jate of Collection	*******
	Rpt. Limit	Amount	Rpt, Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chloride	290	1400	740	3600
Bromomethane	290	Not Detected	1100	Not Detected
Chloroethane	290	390	760	1000
1,1-Dichloroethene	290	190 J 15	1100	740 J
Methylene Chloride	290	8100	1000	28000
1,1-Dichloroethane	290	3500	1200	14000
cis-1,2-Dichloroethene	290	21000	1100	83000
Chloroform	290	10000	1400	49000
1,1,1-Trichloroethane	290	32000	1600	170000
Carbon Tetrachloride	290	Not Detected	1800	Not Detected
Benzene	290	6300	920	20000
1,2-Dichloroethane	290	520	1200	2100
Trichloroethene	290	31000	1500	160000
1,2-Dichloropropane	290	540	1300	2500
cis-1,3-Dichloropropene	290	Not Detected	1300	Not Detected
Toluene	290	65000	1100	240000
rans-1,3-Dichloropropene	290	Not Detected	1300	Not Detected
1,1,2-Trichloroethane	290	Not Detected	1600	Not Detected
Tetrachloroethene	290	57000	2000	390000
Chlorobenzene	290	Not Detected	1300	Not Detected
Ethyl Benzene	290	12000	1200	52000
n,p-Xylene	290	55000	1200	240000
o-Xylene	290	25000	1200	110000
Styrene	290	Not Detected	1200	Not Detected
1,1,2,2-Tetrachloroethane	290	Not Detected	2000	Not Detected
Bromodichloromethane	290	Not Detected	1900	Not Detected
Dibromochloromethane	290	Not Detected	2400	Not Detected
Chloromethane	1200	Not Detected	2400	Not Detected
Acetone	1200	2100	2700	5000
Carbon Disulfide	1200	340 J /5	3600	1000 J
rans-1,2-Dichloroethene	1200	160 J /5	4600	640 J
-Butanone (Methyl Ethyl Ketone)	1200	840 J /T	3400	2500 J
I-Methyl-2-pentanone	1200	1300	4700	5300
2-Hexanone	1200	Not Detected	4700	Not Detected
Bromoform	1200	Not Detected	12000	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Surrogates %Recovery Limits

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #4 TOX 1 INF Dup Lab ID#: 0606371A-04A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name R	62615 Date of Co	ellection, 8/15/06
DIL Factor Surrogates	576 Date of An	alysis: 6/20/06/09:45 PM Method Limits
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	90	70-130
4-Bromofluorobenzene	109	70-130

127/06

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #5 TOX 1 EFF

Lab ID#: 0606371A-05A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name: DH: Factor:	1062618	\$	late of Gollection	x/3000000000000000000000000000000000000
ALC THAT	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Vinyl Chloride	0.70	5.6	1.8	14
Bromomethane	0.70	0.21 J /5	2.7	0.82 J
Chloroethane	0.70	1.9	1.8	5.1
1,1-Dichloroethene	0.70	21	2.8	84
Methylene Chloride	0.70	59	2.4	200
1,1-Dichloroethane	0.70	8.8	2.8	36
cis-1,2-Dichloroethene	0.70	27	2.8	110
Chloroform	0.70	8.0	3.4	39
1,1,1-Trichloroethane	0.70	73	3.8	400
Carbon Tetrachloride	0.70	0.84	4.4	5.3
Benzene	0.70	53	2.2	170
1,2-Dichloroethane	0.70	2.4	2.8	9.9
Trichloroethene	0.70	80	3.7	430
1,2-Dichloropropane	0.70	0.75	3.2	3.5
cis-1,3-Dichloropropene	0.70	Not Detected	3.2	Not Detected
Toluene	0.70	260	2.6	970
trans-1,3-Dichloropropene	0.70	Not Detected	3.2	Not Detected
1,1,2-Trichloroethane	0.70	Not Detected	3.8	Not Detected
Tetrachloroethene	0.70	160	4.7	1100
Chlorobenzene	0.70	1.8	3.2	8.2
Ethyl Benzene	0.70	44	3.0	190
n,p-Xylene	0.70	210	3.0	910
o-Xylene	0.70	76	3.0	330
Styrene	0.70	Not Detected	3.0	Not Detected
1,1,2,2-Tetrachloroethane	0.70	Not Detected	4.8	Not Detected
Bromodichloromethane	0.70	0.22 1 /5	4.6	1.4 J
Dibromochloromethane	0.70	0.28 J /5	5.9	2.3 J
Chloromethane	2.8	4.6	5.7	9.4
Acetone	2.8	66	6.6	160
Carbon Disulfide	2.8	1.3 1/5	8.6	4.2 J
rans-1,2-Dichloroethene	2.8	3.7	11	15
2-Butanone (Methyl Ethyl Ketone)	2.8	27	8.2	80
1-Methyl-2-pentanone	2.8	13	11	53
2-Hexanone	2.8	1.11	11	4.5 J
Bromoform	2.8	0.55 J	29	5.7 J

J = Estimated value.

Container Type: 6 Liter Summa Canister

Surrogates %Recovery Limits

- CRS 1/27/06

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #5 TOX 1 EFF

Lab ID#: 0606371A-05A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

618 Date of Co.	llection: 8/15/08
%Recovery	Method Limits
97	70-130
88	70-130
110	70-130
	97 88

Client Sample ID: #6 TOX 2 INF Lab ID#: 0606371A-06A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name: Dil Factor	1062815 292		Date of Collection Date of Analysis:	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	150	1700	370	4500
Bromomethane	150	Not Detected	570	Not Detected
Chloroethane	150	1100	380	2900
1,1-Dichloroethene	150	740	580	2900
Methylene Chloride	150	11000	510	38000
1,1-Dichloroethane	150	2600	590	10000
cis-1,2-Dichloroethene	150	16000	580	62000
Chloroform	150	1200	710	5800
1,1,1-Trichloroethane	150	17000	800	91000
Carbon Tetrachloride	150	Not Detected	920	Not Detected
Benzene	150	9800	470	31000
1,2-Dichloroethane	150	400	590	1600
Trichloroethene	150	14000	780	77000
1,2-Dichloropropane	150	160	670	740
cis-1,3-Dichloropropene	150	Not Detected	660	Not Detected
Toluene	150	52000	550	200000
rans-1,3-Dichloropropene	150	Not Detected	660	Not Detected
1,1,2-Trichloroethane	150	95 J 15	800	520 J
Tetrachloroethene	150	30000	990	200000
Chlorobenzene	150	Not Detected	670	Not Detected
Ethyl Benzene	150	8300	630	36000
m,p-Xylene	150	35000	630	150000
o-Xylene	150	14000	630	62000
Styrene	150	Not Detected	620	Not Detected
1,1,2,2-Tetrachloroethane	150	Not Detected	1000	Not Detected
Bromodichloromethane	150	Not Detected	980	Not Detected
Dibromochloromethane	150	Not Detected	1200	Not Detected
Chloromethane	580	Not Detected	1200	Not Detected
Acetone	580	5900	1400	14000
Carbon Disulfide	580	Not Detected	1800	Not Detected
rans-1,2-Dichloroethene	580	130 J /5	2300	500 J
2-Butanone (Methyl Ethyl Ketone)	580	4400	1700	13000
-Methyl-2-pentanone	580	2700	2400	11000
2-Hexanone	580	Not Detected	2400	Not Detected
Bromoform	580	Not Detected	6000	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Surrogates %Recovery Limits

Client Sample ID: #6 TOX 2 INF Lab ID#: 0606371A-06A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

	1062815	Date of Go	lection: 5/15/06
	292	Date of An	Alvais 8/28/06/08/67 PM Method Limits
16787 HT.		96	70-130
		98	70-130
		97	70-130
		1062815 292	98

Client Sample ID: #7 TOX 2 INF Dup Lab ID#: 0606371A-07A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name Diff. Factor:	1082818 286		Date of Collection Date of Analysis:	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	140	1400	370	3600
Bromomethane	140	Not Detected	560	Not Detected
Chloroethane	140	940	380	2500
1,1-Dichloroethene	140	590	570	2400
Methylene Chloride	140	14000	500	49000
1,1-Dichloroethane	140	2400	580	9900
cis-1,2-Dichloroethene	140	14000	570	55000
Chloroform	140	1200	700	5600
1,1,1-Trichloroethane	140	15000	780	84000
Carbon Tetrachloride	140	Not Detected	910	Not Detected
Benzene	140	9200	460	29000
1,2-Dichloroethane	140	380	580	1500
Trichloroethene	140	13000	770	68000
1,2-Dichloropropane	140	160	660	750
cis-1,3-Dichloropropene	140	Not Detected	650	Not Detected
Toluene	140	48000	540	180000
trans-1,3-Dichloropropene	140	Not Detected	650	Not Detected
1,1,2-Trichloroethane	140	81 J	780	440 J
Tetrachloroethene	140	23000	980	150000
Chlorobenzene	140	Not Detected	660	Not Detected
Ethyl Benzene	140	7400	620	32000
n,p-Xylene	140	31000	620	140000
o-Xylene	140	13000	620	56000
Styrene	140	Not Detected	610	Not Detected
1,1,2,2-Tetrachloroethane	140	Not Detected	990	Not Detected
Bromodichloromethane	140	Not Detected	960	Not Detected
Dibromochloromethane	140	Not Detected	1200	Not Detected
Chloromethane	580	Not Detected	1200	Not Detected
Acetone	580	5300	1400	13000
Carbon Disulfide	580	Not Detected	1800	Not Detected
rans-1,2-Dichloroethene	580	120 J /5	2300	480 J
2-Butanone (Methyl Ethyl Ketone)	580	4100	1700	12000
I-Methyl-2-pentanone	580	2400	2400	9900
2-Hexanone	580	Not Detected	2400	Not Detected
Bromoform	580	Not Detected	6000	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Surrogates %Recovery Limits

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #7 TOX 2 INF Dup

Lab ID#: 0606371A-07A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

62616 Date of Co	lection: 6/15/96	
%Recovery	Method Limits	
96	70-130	
99	70-130	
98	70-130	
	96 99	

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #8 TOX 2 EFF

Lab ID#: 0606371A-08A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name:	1062818		ante d'Artifection	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Vinyl Chloride	7.0	91	18	230
Bromomethane	7.0	Not Detected	27	Not Detected
Chloroethane	7.0	27	19	71
1,1-Dichloroethene	7.0	130	28	510
Methylene Chloride	7.0	320	24	1100
1,1-Dichloroethane	7.0	73	28	290
cis-1,2-Dichloroethene	7.0	460	28	1800
Chloroform	7.0	40	34	200
1,1,1-Trichloroethane	7.0	430	38	2300
Carbon Tetrachloride	7.0	Not Detected	44	Not Detected
Benzene	7.0	380	22	1200
1,2-Dichloroethane	7.0	11	28	46
Trichloroethene	7.0	480	38	2600
1,2-Dichloropropane	7.0	4.9 1	32	22 J
cis-1,3-Dichloropropene	7.0	Not Detected	32	Not Detected
Toluene	7.0	1300	26	5000
trans-1,3-Dichloropropene	7.0	Not Detected	32	Not Detected
1,1,2-Trichloroethane	7.0	2.7 J /5	38	15 J
Tetrachloroethene	7.0	1000	48	6800
Chlorobenzene	7.0	3.7 J /T	32	17 J
Ethyl Benzene	7.0	200	31	870
m,p-Xylene	7.0	850	31	3700
o-Xylene	7.0	420	31	1800
Styrene	7.0	Not Detected	30	Not Detected
1,1,2,2-Tetrachloroethane	7.0	3.21 /5	48	22 J
Bromodichloromethane	7.0	Not Detected	47	Not Detected
Dibromochloromethane	7.0	Not Detected	60	Not Detected
Chloromethane	28	12 J	58	24 J
Acetone	28	260	67	610
Carbon Disulfide	28	6.7 J /T	88	21 J
rans-1,2-Dichloroethene	28	88	110	350
2-Butanone (Methyl Ethyl Ketone)	28	91	83	270
1-Methyl-2-pentanone	28	36	120	150
2-Hexanone	28	Not Detected	120	Not Detected
Bromoform	28	Not Detected	290	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister

Method %Recovery Limits Surrogates

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #8 TOX 2 EFF

Lab ID#: 0606371A-08A

MODIFIED EPA METHOD TO-14A GC/MS FULL SCAN

File Name 1	062848 Bate of Co	lection: 5/15/06
Dil: Factor. Surrogates	14.1 Date of Ans	alysis: 6/26/06 11.23/PM Method Limits
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	95	70-130

Client Sample ID: #1 OFFSITE ISVE

Lab ID#: 0606371B-01A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

	Date of	Extraction: 8/19/06
Compound	Rpt. Limit (ug)	Amount (ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	2.1
2-Chlorophenol	5.0	Not Detected
1,3-Dichlorobenzene	1.0	0.76 J
1,4-Dichlorobenzene	1.0	2.8
1,2-Dichlorobenzene	1.0	24
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
sophorone	1.0	12
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
ois(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
,2,4-Trichlorobenzene	1.0	0.88 J /-
Naphthalene	1.0	22
-Chloroaniline	10	Not Detected
lexachlorobutadiene	1.0	2.0
-Chloro-3-methylphenol	5.0	Not Detected
2-Methylnaphthalene	1.0	4.2
Hexachlorocyclopentadiene	20	Not Detected
2,4,6-Trichlorophenol	5.0	Not Detected
2,4,5-Trichlorophenol	5.0	Not Detected
-Chloronaphthalene	1.0	Not Detected
-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
Acenaphthylene	1.0	Not Detected
,6-Dinitrotoluene	5.0	Not Detected
-Nitroaniline	10	Not Detected
cenaphthene	1.0	Not Detected
,4-Dinitrophenol	20	Not Detected
-Nitrophenol	20	Not Detected
,4-Dinitrotoluene	5.0	Not Detected
ibenzofuran	1.0	Not Detected
hiethylphthalate	5.0	1.4 J /5
luorene	1.0	Not Detected
-Chlorophenyl-phenyl Ether	1.0	Not Detected

Client Sample ID: #1 OFFSITE ISVE

Lab ID#: 0606371B-01A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

to Name: 6052109 Date of Golf		Gallaction: 6/15/06
DIL Factor: 1		Analysis: 6/21/06 05:28 PM? Extraction: 6/19/06
	Rpt. Limit	Amount
Compound	(ug)	(ug)
4-Nitroaniline	10	Not Detected
4,6-Dinitro-2-methylphenol	10	Not Detected
N-Nitrosodiphenylamine	10	Not Detected
4-Bromophenyl-phenyl Ether	1.0	Not Detected
Hexachlorobenzene	1.0	Not Detected
Pentachlorophenol	20	Not Detected
Phenanthrene	1.0	Not Detected
Anthracene	1.0	Not Detected
di-n-Butylphthalate	5.0	Not Detected
Fluoranthene	1.0	Not Detected
Pyrene	1.0	Not Detected
Butylbenzylphthalate	5.0	Not Detected
3,3'-Dichlorobenzidine	20	Not Detected
Chrysene	1.0	Not Detected
Benzo(a)anthracene	1.0	Not Detected
bis(2-Ethylhexyl)phthalate	5.0	3.4 J /5
Di-n-Octylphthalate	5.0	Not Detected
Benzo(b)fluoranthene	1.0	Not Detected
Benzo(k)fluoranthene	1.0	Not Detected
Benzo(a)pyrene	1.0	Not Detected
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected
Dibenz(a,h)anthracene	1.0	Not Detected
Benzo(g,h,i)perylene	1.0	Not Detected
J = Estimated value.		
Container Type: XAD Tube		
Surrogates	%Recovery	Method Limits
2-Fluorophenol	70	50-150
Phenol-d5	69	50-150
litrobenzene-d5	74	50-150
,4,6-Tribromophenol	55	50-150
luorene-d10	66	60-120
Pyrene-d10	70	60-120

Client Sample ID: #2 SBPA (ONSITE) ISVE Lab ID#: 0606371B-02A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

		Extraction: 6/19/06
Compound	Rpt. Limit	Amount
	(ug) 5.0	(ug)
Phenol		Not Detected
bis(2-Chloroethyl) Ether	1.0	0.84 J
2-Chlorophenol	5.0	Not Detected
1,3-Dichlorobenzene	1.0	0.48 J /5
1,4-Dichlorobenzene	1.0	1.2
1,2-Dichlorobenzene	1.0	5.6
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
I-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
sophorone	1.0	Not Detected
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
ois(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
1,2,4-Trichlorobenzene	1.0	Not Detected
Naphthalene	1.0	1.6
I-Chloroaniline	10	Not Detected
Hexachlorobutadiene	1.0	0.92 J
-Chloro-3-methylphenol	5.0	Not Detected
2-Methylnaphthalene	1.0	0.93 J /
lexachlorocyclopentadiene	20	Not Detected
2,4,6-Trichlorophenol	5.0	Not Detected
2,4,5-Trichlorophenol	5.0	Not Detected
-Chloronaphthalene	1.0	Not Detected
-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
Acenaphthylene	1.0	Not Detected
c,6-Dinitrotoluene	5.0	Not Detected
	10	Not Detected
-Nitroaniline	1.0	Not Detected
cenaphthene		Not Detected
,4-Dinitrophenol	20	
-Nitrophenol	20	Not Detected
,4-Dinitrotoluene	5.0	Not Detected
Dibenzofuran	1.0	Not Detected
Diethylphthalate	5.0	Not Detected
luorene	1.0	Not Detected Not Detected Not Detected
-Chlorophenyl-phenyl Ether	1.0	Not Detected
	Page 9 of 26	-177100
		7141

Client Sample ID: #2 SBPA (ONSITE) ISVE

Lab ID#: 0606371B-02A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Name: p062110 Date of Co			
DIL Factor: 1		Collection: 6/15/06 Analysis: 6/21/06/03/58 PM:	
		Extraction: 6/19/08	
	Rpt. Limit	Amount	
Compound	(ug)	(ug)	
4-Nitroaniline	10	Not Detected	
4,6-Dinitro-2-methylphenol	10	Not Detected	
N-Nitrosodiphenylamine	10	Not Detected	
4-Bromophenyl-phenyl Ether	1.0	Not Detected	
Hexachlorobenzene	1.0	Not Detected	
Pentachlorophenol	20	Not Detected	
Phenanthrene	1.0	Not Detected	
Anthracene	1.0	Not Detected	
di-n-Butylphthalate	5.0	Not Detected	
Fluoranthene	1.0	Not Detected	
Pyrene	1.0	Not Detected	
Butylbenzylphthalate	5.0	Not Detected	
3,3'-Dichlorobenzidine	20	Not Detected	
Chrysene	1.0	Not Detected	
Benzo(a)anthracene	1.0	Not Detected	
ois(2-Ethylhexyl)phthalate	5.0	8.6	
Di-n-Octylphthalate	5.0	Not Detected	
Benzo(b)fluoranthene	1.0	Not Detected	
Benzo(k)fluoranthene	1.0	Not Detected	
Benzo(a)pyrene	1.0	Not Detected	
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected	
Dibenz(a,h)anthracene	1.0	Not Detected	
Benzo(g,h,i)perylene	1.0	Not Detected	
I = Estimated value.	0.22		
Container Type: XAD Tube			
Surrogates	%Recovery	Method Limits	
2-Fluorophenol	68	50-150	
Phenol-d5	68	50-150	
litrobenzene-d5	67	50-150	
,4,6-Tribromophenol	51	50-150	
luorene-d10	68	60-120	
Pyrene-d10	66	60-120	

Client Sample ID: #3 TOX 1 INF Lab ID#: 0606371B-03A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

Oll Factors 1:00		Analysis: \$/21/06/06/20 PM Extraction: 5/19/06
	Rpt. Límit	Amount
Compound	(ug)	(ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	11
2-Chlorophenol	5.0	Not Detected
1,3-Dichlorobenzene	1.0	7.1
1,4-Dichlorobenzene	1.0	18
1,2-Dichlorobenzene	1.0	74
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
sophorone	1.0	5.0
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
pis(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
1,2,4-Trichlorobenzene	1.0	2.1
Naphthalene	1.0	35
-Chloroaniline	10	Not Detected
Hexachlorobutadiene	1.0	15
I-Chloro-3-methylphenol	5.0	Not Detected
2-Methylnaphthalene	1.0	27
lexachlorocyclopentadiene	20	Not Detected
2,4,6-Trichlorophenol	5.0	Not Detected
2,4,5-Trichlorophenol	5.0	Not Detected
2-Chloronaphthalene	1.0	Not Detected
2-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
cenaphthylene	1.0	Not Detected
.,6-Dinitrotoluene	5.0	Not Detected
-Nitroaniline	10	Not Detected
cenaphthene	1.0	Not Detected
,4-Dinitrophenol	20	Not Detected
-Nitrophenol	20	Not Detected
,4-Dinitrotoluene	5.0	Not Detected
Dibenzofuran	1.0	Not Detected
Piethylphthalate	5.0	Not Detected
luorene	1.0	Not Detected
-Chlorophenyl-phenyl Ether	1.0	Not Detected

Page 11 of 26

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: #3 TOX 1 INF

Lab ID#: 0606371B-03A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Name p06211 Dit Factor: 1.0		Collection: 6/15/06 Analysis: 6/21/06/06/28 PM:
170. Factor: 1.10		Analysis: 6/24/06 (6:226-6:14) Extraction: 6/19/06
	Rpt. Limit	Amount
Compound	(ug)	(ug)
4-Nitroaniline	10	Not Detected
4,6-Dinitro-2-methylphenol	10	Not Detected
N-Nitrosodiphenylamine	10	Not Detected
4-Bromophenyl-phenyl Ether	1.0	Not Detected
Hexachlorobenzene	1.0	Not Detected
Pentachlorophenol	20	Not Detected
Phenanthrene	1.0	Not Detected
Anthracene	1.0	Not Detected
di-n-Butylphthalate	5.0	Not Detected
Fluoranthene	1.0	Not Detected
Pyrene	1.0	Not Detected
Butylbenzylphthalate	5.0	Not Detected
3,3'-Dichlorobenzidine	20	Not Detected
Chrysene	1.0	Not Detected
Benzo(a)anthracene	1.0	Not Detected
pis(2-Ethylhexyl)phthalate	5.0	16
Di-n-Octylphthalate	5.0	Not Detected
Benzo(b)fluoranthene	1.0	Not Detected
Benzo(k)fluoranthene	1.0	Not Detected
Benzo(a)pyrene	1.0	Not Detected
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected
Dibenz(a,h)anthracene	1.0	Not Detected
Benzo(g,h,i)perylene	1.0	Not Detected
2 = Exceeds Quality Control limits.		
Container Type: XAD Tube		This may provide the
Surrogates	%Recovery	Method Limits
-Fluorophenol	70	50-150
henol-d5	70	50-150
litrobenzene-d5	84	50-150
,4,6-Tribromophenol	47 Q /Q	50-150
luorene-d10	66	60-120
yrene-d10	68	60-120

Client Sample ID: #4 TOX 1 INF DUP

Lab ID#: 0606371B-04A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

Dili Factor 4-00	Date of Attalys 8:: 8/21/06 (Date of Education: 6/19/06	
Compound	Rpt. Limit (ug)	Amount (ug)
Phenol	5.0	Not Detecte
bis(2-Chloroethyl) Ether	1.0	18
2-Chlorophenol	5.0	Not Detecte
1,3-Dichlorobenzene	1.0	11
1,4-Dichlorobenzene	1.0	27
1,2-Dichlorobenzene	1.0	110
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
Isophorone	1.0	8.9
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
bis(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
1,2,4-Trichlorobenzene	1.0	3.5
Naphthalene	1.0	58
4-Chloroaniline	10	Not Detected
Hexachlorobutadiene	1.0	26
I-Chloro-3-methylphenol	5.0	Not Detected
2-Methylnaphthalene	1.0	44
Hexachlorocyclopentadiene	20	Not Detected
2,4,6-Trichlorophenol	5.0	Not Detected
2,4,5-Trichlorophenol	5.0	Not Detected
2-Chloronaphthalene	1.0	Not Detected
2-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
Acenaphthylene	1.0	Not Detected
2.6-Dinitrotoluene	5.0	Not Detected
3-Nitroaniline	10	Not Detected
Acenaphthene	1.0	Not Detected
,4-Dinitrophenol	20	Not Detected
-Nitrophenol	20	Not Detected
.4-Dinitrotoluene	5.0	Not Detected
Dibenzofuran	1.0	Not Detected
Diethylphthalate	5.0	Not Detected
luorene	1.0	Not Detected
-Chlorophenyl-phenyl Ether	1.0	Not Detected

Page 13 of 26

CRS 127/06

Client Sample ID: #4 TOX 1 INF DUP

Lab ID#: 0606371B-04A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

DIL Pactor:		Analysis) 6/21/06 06:59 PM
		Extraction: 6/19/06
Compound	Rpt. Limit (ug)	Amount (ug)
	10	
4-Nitroaniline	그렇게 많아 먹는 것이 되면 하는 것이 되었다면 하는 것이 없는 것이 없다.	Not Detected
4,6-Dinitro-2-methylphenol	10	Not Detected
N-Nitrosodiphenylamine	10	Not Detected
4-Bromophenyl-phenyl Ether	1.0	Not Detected
Hexachlorobenzene	1.0	Not Detected
Pentachlorophenol	20	Not Detected
Phenanthrene	1.0	Not Detected
Anthracene	1.0	Not Detected
di-n-Butylphthalate	5.0	Not Detected
Fluoranthene	1.0	Not Detected
Pyrene	1.0	Not Detected
Butylbenzylphthalate	5.0	Not Detected
3,3'-Dichlorobenzidine	20	Not Detected
Chrysene	1.0	Not Detected
Benzo(a)anthracene	1.0	Not Detected
bis(2-Ethylhexyl)phthalate	5.0	6.6
Di-n-Octylphthalate	5.0	Not Detected
Benzo(b)fluoranthene	1.0	Not Detected
Benzo(k)fluoranthene	1.0	Not Detected
Benzo(a)pyrene	1.0	Not Detected
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected
Dibenz(a,h)anthracene	1.0	Not Detected
Benzo(g,h,i)perylene	1.0	Not Detected
Container Type: XAD Tube		
Surrogates	%Recovery	Method Limits
2-Fluorophenol	71	50-150
Phenol-d5	69	50-150
litrobenzene-d5	87	50-150
,4,6-Tribromophenol	52	50-150
luorene-d10 yrene-d10	67	60-120

Client Sample ID: #5 TOX 1 EFF Lab ID#: 0606371B-05A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Name: p08211 Dit Factor: 1.0	1113 Date of Collection: 6/15/06 1.00 Date of Analysis: 6/21/06 07:21	
		Extraction: 6/19/06
	Rpt. Limit	Amount
Compound	(ug)	(ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	Not Detected
2-Chlorophenol	5.0	Not Detected
1,3-Dichlorobenzene	1.0	Not Detected
1,4-Dichlorobenzene	1.0	Not Detected
1,2-Dichlorobenzene	1.0	Not Detected
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
sophorone	1.0	Not Detected
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
ois(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
1,2,4-Trichlorobenzene	1.0	Not Detected
Naphthalene	1.0	Not Detected
1-Chloroaniline	10	Not Detected
Hexachlorobutadiene	1.0	Not Detected
1-Chloro-3-methylphenol	5.0	Not Detected
2-Methylnaphthalene	1.0	Not Detected
dexachlorocyclopentadiene	20	Not Detected
2,4,6-Trichlorophenol	5.0	Not Detected
2,4,5-Trichlorophenol	5.0	Not Detected
2-Chloronaphthalene	1.0	Not Detected
2-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
Acenaphthylene	1.0	Not Detected
2,6-Dinitrotoluene	5.0	Not Detected
-Nitroaniline	10	Not Detected
cenaphthene	1.0	Not Detected
.4-Dinitrophenol	20	Not Detected
-Nitrophenol	20	Not Detected
,4-Dinitrotoluene	5.0	Not Detected
Dibenzofuran	1.0	Not Detected
Diethylphthalate	5.0	Not Detected
luorene	1.0	Not Detected
-Chlorophenyl-phenyl Ether	1.0	Not Detected

Page 15 of 26

CRS

Client Sample ID: #5 TOX 1 EFF

Lab ID#: 0606371B-05A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Name: p06	Collection: 6/15/96	
File Name: Pub Bill Factor:		zenscher brand Analysis: 6/21/06/07:29 PM
		Extraction 6/19/06
	Rpt. Limit	Amount (ug)
Compound	(ug)	
4-Nitroaniline	10	Not Detected
4,6-Dinitro-2-methylphenol	10	Not Detected
N-Nitrosodiphenylamine	10	Not Detected
4-Bromophenyl-phenyl Ether	1.0	Not Detected
Hexachlorobenzene	1.0	Not Detected
Pentachlorophenol	20	Not Detected
Phenanthrene	1.0	Not Detected
Anthracene	1.0	Not Detected
di-n-Butylphthalate	5.0	Not Detected
Fluoranthene	1.0	Not Detected
Pyrene	1.0	Not Detected
Butylbenzylphthalate	5.0	Not Detected
3,3'-Dichlorobenzidine	20	Not Detected
Chrysene	1.0	Not Detected
Benzo(a)anthracene	1.0	Not Detected
ois(2-Ethylhexyl)phthalate	5.0	8.2
Di-n-Octylphthalate	5.0	Not Detected
Benzo(b)fluoranthene	1.0	Not Detected
Benzo(k)fluoranthene	1.0	Not Detected
Benzo(a)pyrene	1.0	Not Detected
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected
Dibenz(a,h)anthracene	1.0	Not Detected
Benzo(g,h,i)perylene	1.0	Not Detected
Container Type: XAD Tube		
Gurrogates	%Recovery	Method Limits
-Fluorophenol	63	50-150
henol-d5	67	50-150
itrobenzene-d5	61	50-150
,4,6-Tribromophenol	54	50-150
luorene-d10	65	60-120
vrene-d10	71	60-120

Client Sample ID: #6 TOX 2 INF

Lab ID#: 0606371B-06A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

Dit Factor 1,00	N 45 4 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Analysis: 8/21/06.07:59 PM
	Date of Rpt. Limit	Extraction: 6/19/06 Amount
Compound	(ug)	(ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	Not Detected
2-Chlorophenol	5.0	Not Detected
1,3-Dichlorobenzene	1.0	Not Detected
1,4-Dichlorobenzene	1.0	Not Detected
1,2-Dichlorobenzene	1.0	Not Detected
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
Isophorone	1.0	Not Detected
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
ois(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
1.2.4-Trichlorobenzene	1.0	Not Detected
Naphthalene	1.0	Not Detected
-Chloroaniline	10	Not Detected
Hexachlorobutadiene	1.0	Not Detected
-Chloro-3-methylphenol	5.0	Not Detected
2-Methylnaphthalene	1.0	Not Detected
Hexachlorocyclopentadiene	20	Not Detected
2,4,6-Trichlorophenol	5.0	Not Detected
2,4,5-Trichlorophenol	5.0	Not Detected
2-Chloronaphthalene	1.0	Not Detected
2-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
Acenaphthylene	1.0	Not Detected
2,6-Dinitrotoluene	5.0	Not Detected
-Nitroaniline	10	Not Detected
Acenaphthene	1.0	Not Detected
,4-Dinitrophenol	20	Not Detected
-Nitrophenol	20	Not Detected
,4-Dinitrotoluene	5.0	Not Detected
bibenzofuran	1.0	Not Detected
Diethylphthalate	5.0	Not Detected
luorene	1.0	Not Detected
-Chlorophenyl-phenyl Ether	1.0	Not Detected

Page 17 of 26

Client Sample ID: #6 TOX 2 INF Lab ID#: 0606371B-06A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

je Name: p062114 Date of C I: Pactor; 1.00 Date of A		Collection: 6/15/06 Autalysis: 6/21/06/07:59 PM	
en, racion		Extraction: 8/19/06	
	Rpt. Limit	Amount	
Compound	(ug)	(ug)	
4-Nitroaniline	10	Not Detected	
4,6-Dinitro-2-methylphenol	10	Not Detected	
N-Nitrosodiphenylamine	10	Not Detected	
4-Bromophenyl-phenyl Ether	1.0	Not Detected	
Hexachlorobenzene	1.0	Not Detected	
Pentachlorophenol	20	Not Detected	
Phenanthrene	1.0	Not Detected	
Anthracene	1.0	Not Detected	
di-n-Butylphthalate	5.0	Not Detected	
Fluoranthene	1.0	Not Detected	
Pyrene	1.0	Not Detected	
Butylbenzylphthalate	5.0	Not Detected	
3,3'-Dichlorobenzidine	20	Not Detected	
Chrysene	1.0	Not Detected	
Benzo(a)anthracene	1.0	Not Detected	
bis(2-Ethylhexyl)phthalate	5.0	26	
Di-n-Octylphthalate	5.0	Not Detected	
Benzo(b)fluoranthene	1.0	Not Detected	
Benzo(k)fluoranthene	1.0	Not Detected	
Benzo(a)pyrene	1.0	Not Detected	
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected	
Dibenz(a,h)anthracene	1.0	Not Detected	
Benzo(g,h,i)perylene	1.0	Not Detected	
Container Type: XAD Tube			
Surrogates	%Recovery	Method Limits	
2-Fluorophenol	66	50-150	
Phenol-d5	67	50-150	
litrobenzene-d5	63	50-150	
4,4,6-Tribromophenol	54	50-150	
luorene-d10	66	60-120	
Pyrene-d10	66	60-120	

Client Sample ID: #7 TOX 2 INF DUP

Lab ID#: 0606371B-07A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

		Analysis: 6/21/08/08/29 PM
		Extraction: 6/1906
Commound	Rpt. Limit	Amount
Compound	(ug)	(ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	Not Detected
2-Chlorophenol	5.0	Not Detected
1,3-Dichlorobenzene	1.0	Not Detected
1,4-Dichlorobenzene	1.0	Not Detected
1,2-Dichlorobenzene	1.0	Not Detected
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
Isophorone	1.0	Not Detected
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
bis(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
1,2,4-Trichlorobenzene	1.0	Not Detected
Naphthalene	1.0	Not Detected
1-Chloroaniline	10	Not Detected
Hexachlorobutadiene	1.0	Not Detected
-Chloro-3-methylphenol	5.0	Not Detected
2-Methylnaphthalene	1.0	Not Detected
dexachlorocyclopentadiene	20	Not Detected
2,4,6-Trichlorophenol	5.0	Not Detected
2,4,5-Trichlorophenol	5.0	Not Detected
2-Chloronaphthalene	1.0	Not Detected
2-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
Acenaphthylene	1.0	Not Detected
,6-Dinitrotoluene	5.0	Not Detected
-Nitroaniline	10	Not Detected
cenaphthene	1.0	Not Detected
,4-Dinitrophenol	20	Not Detected
-Nitrophenol	20	Not Detected
,4-Dinitrotoluene	5.0	Not Detected
Dibenzofuran	1.0	Not Detected
Piethylphthalate	5.0	Not Detected
luorene	1.0	Not Detected
-Chlorophenyl-phenyl Ether	1.0	Not Detected

Page 19 of 26

Client Sample ID: #7 TOX 2 INF DUP

Lab ID#: 0606371B-07A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File-Name p062		ollection: 6/15/06	
Dil Paston		Analysis: 6/21/06/06/29 PM Extraction: 6/19/06	
Compound	Rpt. Limit (ug)	Amount (ug)	
4-Nitroaniline	10	Not Detected	
4,6-Dinitro-2-methylphenol	10	Not Detected	
N-Nitrosodiphenylamine	10	Not Detected	
4-Bromophenyl-phenyl Ether	1.0	Not Detected	
Hexachlorobenzene	1.0	Not Detected	
Pentachlorophenol	20	Not Detected	
Phenanthrene	1.0	Not Detected	
Anthracene	1.0	Not Detected	
di-n-Butylphthalate	5.0	Not Detected	
Fluoranthene	1.0	Not Detected	
Pyrene	1.0	Not Detected	
Butylbenzylphthalate	5.0	Not Detected	
3,3'-Dichlorobenzidine	20	Not Detected	
Chrysene	1.0	Not Detected	
Benzo(a)anthracene	1.0	Not Detected	
ois(2-Ethylhexyl)phthalate	5.0	14	
Di-n-Octylphthalate	5.0	Not Detected	
Benzo(b)fluoranthene	1.0	Not Detected	
Benzo(k)fluoranthene	1.0	Not Detected	
Benzo(a)pyrene	1.0	Not Detected	
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected	
Dibenz(a,h)anthracene	1.0	Not Detected	
Benzo(g,h,i)perylene	1.0	Not Detected	
Container Type: XAD Tube			
Surrogates	%Recovery	Method Limits	
-Fluorophenol	73	50-150	
Phenol-d5	74	50-150	
litrobenzene-d5	70	50-150	
,4,6-Tribromophenol	54	50-150	
luorene-d10	70	60-120	
yrene-d10	72	60-120	

Client Sample ID: #8 TOX 2 EFF

Lab ID#: 0606371B-08A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

	B Date of Analysis; 627/06/08/58 PM Date of Extraction; 6/19/06	
Compound	Rpt. Limit (ug)	Amount (ug)
Phenol	5.0	Not Detected
bis(2-Chloroethyl) Ether	1.0	Not Detected
2-Chlorophenol	5.0	Not Detected
1,3-Dichlorobenzene	1.0	Not Detected
1,4-Dichlorobenzene	1.0	Not Detected
1,2-Dichlorobenzene	1.0	Not Detected
2-Methylphenol (o-Cresol)	5.0	Not Detected
N-Nitroso-di-n-propylamine	1.0	Not Detected
4-Methylphenol/3-Methylphenol	5.0	Not Detected
Hexachloroethane	1.0	Not Detected
Nitrobenzene	1.0	Not Detected
Isophorone	1.0	Not Detected
2-Nitrophenol	5.0	Not Detected
2,4-Dimethylphenol	5.0	Not Detected
bis(2-Chloroethoxy) Methane	1.0	Not Detected
2,4-Dichlorophenol	5.0	Not Detected
1,2,4-Trichlorobenzene	1.0	Not Detected
Naphthalene	1.0	Not Detected
4-Chloroaniline	10	Not Detected
Hexachlorobutadiene	1.0	Not Detected
4-Chloro-3-methylphenol	5.0	Not Detected
2-Methylnaphthalene	1.0	Not Detected
Hexachlorocyclopentadiene	20	Not Detected
2,4,6-Trichlorophenol	5.0	Not Detected
2,4,5-Trichlorophenol	5.0	Not Detected
2-Chloronaphthalene	1.0	Not Detected
2-Nitroaniline	10	Not Detected
Dimethylphthalate	5.0	Not Detected
Acenaphthylene	1.0	Not Detected
2,6-Dinitrotoluene	5.0	Not Detected
3-Nitroaniline	10	Not Detected
Acenaphthene	1.0	Not Detected
2.4-Dinitrophenol	20	Not Detected
-Nitrophenol	20	Not Detected
2,4-Dinitrotoluene	5.0	Not Detected
Dibenzofuran	1.0	Not Detected
Diethylphthalate	5.0	0.85 J /
Fluorene	1.0	Not Detected
-Chlorophenyl-phenyl Ether	1.0	Not Detected

Page 21 of 26

Client Sample ID: #8 TOX 2 EFF Lab ID#: 0606371B-08A

MODIFIED EPA METHOD TO-13A GC/MS FULL SCAN

File Name p062 Dif. Faster:		Collection : 6/15/06 Analysis:: 6/21/06/08:59 PM	
		Extraction: 6/49/06	
Compound	Rpt. Limit (ug)	Amount (ug)	
4-Nitroaniline	10	Not Detected	
4,6-Dinitro-2-methylphenol	10	Not Detecte	
N-Nitrosodiphenylamine	10	Not Detected	
4-Bromophenyl-phenyl Ether	1.0	Not Detected	
Hexachlorobenzene	1.0	Not Detected	
Pentachlorophenol	20	Not Detected	
Phenanthrene	1.0	Not Detected	
Anthracene	1.0	Not Detected	
di-n-Butylphthalate	5.0	Not Detected	
Fluoranthene	1.0	Not Detected	
Pyrene	1.0	Not Detected	
Butylbenzylphthalate	5.0	Not Detected	
3,3'-Dichlorobenzidine	20	Not Detected	
Chrysene	1.0	Not Detected	
Benzo(a)anthracene	1.0	Not Detected	
bis(2-Ethylhexyl)phthalate	5.0	19	
Di-n-Octylphthalate	5.0	Not Detected	
Benzo(b)fluoranthene	1.0	Not Detected	
Benzo(k)fluoranthene	1.0	Not Detected	
Benzo(a)pyrene	1.0	Not Detected	
ndeno(1,2,3-c,d)pyrene	1.0	Not Detected	
Dibenz(a,h)anthracene	1.0	Not Detected	
Benzo(g,h,i)perylene	1.0	Not Detected	
J = Estimated value.			
Container Type: XAD Tube			
Surrogates	%Recovery	Method Limits	
-Fluorophenol Phenol-d5	66	50-150	
litrobenzene-d5	67	50-150	
	63	50-150	
4.4,6-Tribromophenol	63	50-150	
luorene-d10	67	60-120	
Pyrene-d10	68	60-120	